Intro to three phase systems - 4

Consider the following three phase symmetrical system.

Let the line voltage be V = 220 0 [ 1 α 2 α ] V = 220\angle{0^{\circ}} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix} , and consider the following impedances:

{ Z a = 3 + 4 j Z b = 10 j Z c = 10 j \begin{cases} Z_a = 3 + 4j \\ Z_b = 10j\\ Z_c = -10j \end{cases}

What is the magnitude of the voltage difference from the node N N' to the ground? In other words, what is V N N ||V_{NN'}|| ?

Assumptions and Clarifications

  • j = 1 j = \sqrt{-1}
  • α = 1 12 0 = 1 e j 2 π 3 = ( 1 2 + j 3 2 ) \alpha = 1\angle{120^{\circ}} = 1\cdot e^{j\frac{2\pi}{3}} = (\frac{-1}{2} + \frac{j\sqrt{3}}{2})


The answer is 107.07.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mateus Lucas
Sep 14, 2020

The phase voltages are:

[ V a V b V c ] = 220 3 3 0 [ 1 a 2 a ] \begin{bmatrix} V_a\\V_b\\V_c\end{bmatrix}=\dfrac{220}{\sqrt{3}}\angle{-30^\circ}\begin{bmatrix} 1\\a^2\\a\end{bmatrix}

Let g i j g_{ij} and Z i j Z_{ij} be, respectivelly, the admittance and the impedance of the parallel association of Z i Z_i and Z j Z_j :

g a b = 1 Z a + 1 Z b = 0.12 + 0.26 j Z a b 1.46 + 3.17 j g_{ab}=\dfrac{1}{Z_a}+\dfrac{1}{Z_b}=0.12+0.26j\implies Z_{ab}\cong1.46+3.17j

g b c = 1 Z b + 1 Z c = 0 Z b c g_{bc}=\dfrac{1}{Z_b}+\dfrac{1}{Z_c}=0\implies Z_{bc}\to\infty

g c a = 1 Z c + 1 Z a = 0.12 0.06 j Z c a 6.67 + 3.33 j g_{ca}=\dfrac{1}{Z_c}+\dfrac{1}{Z_a}=0.12-0.06j\implies Z_{ca}\cong6.67+3.33j

Using superposition and voltage divider:

  • Case 1: V b = V c = 0 V N N 1 = V a lim Z b c + Z b c Z a + Z b c = V a 127.017 3 0 V_b=V_c=0 \implies V_{N'N1}=V_a\cdot \lim_{Z_{bc}\to+\infty}\dfrac{Z_{bc}}{Z_a+Z_{bc}}=V_a\cong127.017\angle{-30^\circ}

  • Case 2: V a = V c = 0 V N N 2 = V b Z c a Z b + Z c a 63.509 173.1 3 V_a=V_c=0 \implies V_{N'N2}=V_b\cdot \dfrac{Z_{ca}}{Z_b+Z_{ca}}\cong63.509\angle{173.13^\circ}

  • Case 3: V a = V b = 0 V N N 3 = V c Z a b Z c + Z a b 63.509 126.8 7 V_a=V_b=0 \implies V_{N'N3}=V_c\cdot \dfrac{Z_{ab}}{Z_c+Z_{ab}}\cong63.509\angle{-126.87^\circ}

V N N = V N N 1 + V N N 2 + V N N 3 107.084 85.2 6 V_{N'N}=V_{N'N1}+V_{N'N2}+V_{N'N3}\cong107.084\angle{-85.26^\circ}

V N N 107.084 ||V_{NN'}||\cong107.084

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...