Inverse arithmetic

Algebra Level 3

For any natural number N N is it true that there exists an strictly increasing sequence of N N positive integers in harmonic progression .

Clarification :

Inadequate information No Yes

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Oct 16, 2016

When AP is decreasing HP is increasing. Let d = -x a n = a + ( n 1 ) d = a + ( n 1 ) ( x ) = ( a + x ) n x a n + 1 = a + ( n + 1 1 ) d = a n x a n > a n + 1 1 a n + 1 > 1 a n As AP decreases HP increases, until N natural number. Here there is necessary to be a finite number of series because, when AP is decreasing one of the term will be ’0’ in some series, so HP = 1 0 which is indeterminate. \text{When AP is decreasing HP is increasing. } \\ \text{Let d = -x} \\ a_n = a + (n-1)d = a + (n-1)(-x) = (a + x) - nx \\ a_{n+1} = a + (n+1-1)d = a - nx \\ \implies a_n > a_{n+1} \\ \implies \dfrac{1}{a_{n+1}} > \dfrac{1}{a_n} \\ \therefore \text{As AP decreases HP increases, until N natural number. Here there is necessary to be a finite number of series because, } \\ \text{when AP is decreasing one of the term will be '0' in some series, so HP = } \dfrac{1}{0} \text{ which is indeterminate.}

One possible answer for the skeptics: Let M > N M>N . Consider the sequence given by H n = 1 1 ( M 1 ) ! n 1 M 1 ( M 1 ) ! H_n=\frac{1}{\frac{1}{(M-1)!}-\frac{n-1}{M}\frac{1}{(M-1)!}} for 1 n N 1\leq n\leq N .

James Wilson - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...