Inverse chaos

1 x + 1 y + 1 gcd ( x , y ) + 1 lcm ( x , y ) = 1 2 \frac 1x + \frac 1y + \frac {1}{\gcd(x, y)} + \frac{1}{\text{lcm}(x, y)} = \frac 12

Let x x and y y be positive integers that satisfy the equation above.

If the solution pairs ( x , y ) (x, y) are ( x 1 , y 1 ) , ( x 2 , y 2 ) , ( x 3 , y 3 ) , , ( x n , y n ) , (x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots, (x_n, y_n), find i = 1 n ( x i 2 y i ) . \displaystyle \sum_{i \ = \ 1}^{n} \left({x_i}^2 - y_i\right).


The answer is 1772.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Steven Yuan
Aug 8, 2017

Let gcd ( x , y ) = d \gcd(x, y) = d for some positive integer d . d. We can write x = d x 1 , y = d y 1 , x = dx_1, y = dy_1, where gcd ( x 1 , y 1 ) = 1 \gcd(x_1, y_1) = 1 since otherwise the greatest common divisor of x x and y y would not be d . d. We can also write

1 lcm ( x , y ) = gcd ( x , y ) x y = d d x 1 d y 1 = 1 d x 1 y 1 . \dfrac{1}{\text{lcm}(x, y)} = \dfrac{\gcd(x, y)}{xy} = \dfrac{d}{dx_1dy_1} = \dfrac{1}{dx_1y_1}.

Our equation rewrites as

1 x + 1 y + 1 gcd ( x , y ) + 1 lcm ( x , y ) = 1 2 1 d x 1 + 1 d y 1 + 1 d + 1 d x 1 y 1 = 1 2 1 d ( 1 x 1 + 1 y 1 + 1 + 1 x 1 y 1 ) = 1 2 1 x 1 + 1 y 1 + 1 x 1 y 1 = d 2 2 . \begin{aligned} \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{\gcd(x, y)} + \dfrac{1}{\text{lcm}(x, y)} &= \dfrac{1}{2} \\ \dfrac{1}{dx_1} + \dfrac{1}{dy_1} + \dfrac{1}{d} + \dfrac{1}{dx_1y_1} &= \dfrac{1}{2} \\ \dfrac{1}{d} \left (\dfrac{1}{x_1} + \dfrac{1}{y_1} + 1+ \dfrac{1}{x_1y_1} \right) &= \dfrac{1}{2} \\ \dfrac{1}{x_1} + \dfrac{1}{y_1} + \dfrac{1}{x_1y_1} &= \dfrac{d - 2}{2}. \end{aligned}

Notice that this equation implies d 3 , d \geq 3, since the LHS of the equality is a positive value. Also, if we set x 1 , y 1 = 1 , x_1, y_1 = 1, we get the maximum possible value of 1 x 1 + 1 y 1 + 1 x 1 y 1 , \frac{1}{x_1} + \frac{1}{y_1} +\frac{1}{x_1y_1}, which is 3. So, d 2 2 3 , \frac{d - 2}{2} \leq 3, or d 8. d \leq 8.

Continuing on, we have

1 x 1 + 1 y 1 + 1 x 1 y 1 = d 2 2 2 ( x 1 + y 1 + 1 ) = ( d 2 ) x 1 y 1 ( d 2 ) x 1 y 1 2 x 1 2 y 1 = 2 ( d 2 ) 2 x 1 y 1 2 ( d 2 ) x 1 2 ( d 2 ) y 1 = 2 ( d 2 ) ( d 2 ) x 1 [ ( d 2 ) y 1 2 ] 2 [ ( d 2 ) y 1 2 ] = 2 ( d 2 ) + 4 [ ( d 2 ) x 1 2 ] [ ( d 2 ) y 1 2 ] = 2 d . \begin{aligned} \dfrac{1}{x_1} + \dfrac{1}{y_1} + \dfrac{1}{x_1y_1} &= \dfrac{d - 2}{2} \\ 2(x_1 + y_1 + 1) &= (d - 2)x_1y_1 \\ (d - 2)x_1y_1 - 2x_1 - 2y_1 &= 2 \\ (d - 2)^2 x_1y_1 - 2(d - 2)x_1 - 2(d - 2)y_1 &= 2(d - 2) \\ (d - 2)x_1[(d - 2)y_1 - 2] - 2[(d - 2)y_1 - 2] &= 2(d - 2) + 4 \\ [(d - 2)x_1 - 2][(d - 2)y_1 - 2] &= 2d. \end{aligned}

Now, we examine each possible value of d d :

d Corresponding equation Solutions for ( x 1 , y 1 ) Solutions for ( x , y ) 3 ( x 1 2 ) ( y 1 2 ) = 6 ( 3 , 8 ) , ( 4 , 5 ) , ( 5 , 4 ) , ( 8 , 3 ) ( 9 , 24 ) , ( 12 , 15 ) , ( 15 , 12 ) , ( 24 , 9 ) 4 ( x 1 1 ) ( y 1 1 ) = 2 ( 2 , 3 ) , ( 3 , 2 ) ( 8 , 12 ) , ( 12 , 8 ) 5 ( 3 x 1 2 ) ( 3 y 1 2 ) = 10 ( 1 , 4 ) , ( 4 , 1 ) ( 5 , 20 ) , ( 20 , 5 ) 6 ( 2 x 1 1 ) ( 2 y 1 1 ) = 3 ( 1 , 2 ) , ( 2 , 1 ) ( 6 , 12 ) , ( 12 , 6 ) 7 ( 5 x 1 2 ) ( 5 y 1 2 ) = 14 none none 8 ( 3 x 1 1 ) ( 3 y 1 1 ) = 4 ( 1 , 1 ) ( 8 , 8 ) \begin{array}{c|c|c|c} d & \text{Corresponding equation} & \text{Solutions for } (x_1, y_1) & \text{Solutions for } (x, y) \\ \hline 3 & (x_1 - 2)(y_1 - 2) = 6 & (3, 8), (4, 5), (5, 4), (8, 3) & (9, 24), (12, 15), (15, 12), (24, 9) \\ 4 & (x_1 - 1)(y_1 - 1) = 2 & (2, 3), (3, 2) & (8, 12), (12, 8) \\ 5 & (3x_1 - 2)(3y_1 - 2) = 10 & (1, 4), (4, 1) & (5, 20), (20, 5) \\ 6 & (2x_1 - 1)(2y_1 - 1) = 3 & (1, 2), (2, 1) & (6, 12), (12, 6) \\ 7 & (5x_1 - 2)(5y_1 - 2) = 14 & \text{none} & \text{none} \\ 8 & (3x_1 - 1)(3y_1 - 1) = 4 & (1, 1) & (8, 8) \\ \end{array}

In sum, there are n = 11 n = 11 solutions to the original equation, which are:

( x , y ) = ( 9 , 24 ) , ( 12 , 15 ) , ( 15 , 12 ) , ( 24 , 9 ) ( 8 , 12 ) , ( 12 , 8 ) , ( 5 , 20 ) , ( 20 , 5 ) ( 6 , 12 ) , ( 12 , 6 ) , ( 8 , 8 ) . \begin{aligned} (x, y) &= (9, 24), (12, 15), (15, 12), (24, 9) \\ & \quad (8, 12), (12, 8), (5, 20), (20, 5) \\ & \quad (6, 12), (12, 6), (8, 8). \end{aligned}

Thus, i = 1 11 ( x i 2 y i ) = 1772 . \displaystyle \sum_{i = 1}^{11} (x_i^2 - y_i) = \boxed{1772}.

Patrick Corn
Oct 5, 2017

I did more or less the same solution as Steven, just looking at bounding x x instead of d . d.

So write x = d x 1 , y = d y 1 x=dx_1,y=dy_1 where x 1 , y 1 x_1,y_1 are relatively prime. Then we have 1 d x 1 + 1 d y 1 + 1 d + 1 d x 1 y 1 = 1 2 2 x 1 + 2 y 1 + 2 + 2 x 1 y 1 = d 2 ( 1 + 1 x 1 ) ( 1 + 1 y 1 ) = d \begin{aligned} \frac1{dx_1}+\frac1{dy_1}+\frac1{d}+\frac1{dx_1y_1} &= \frac12 \\ \frac2{x_1}+\frac2{y_1}+2+\frac2{x_1y_1} &= d \\ 2\left( 1+ \frac1{x_1} \right) \left( 1+\frac1{y_1} \right) &= d \end{aligned} Suppose for now that x 1 y 1 x_1 \le y_1 (i.e. x y x \le y ).

Now suppose x 1 3. x_1 \ge 3. Then the product on the left is at most 2 4 3 4 3 = 32 9 < 4. 2 \cdot \frac43 \cdot \frac43 = \frac{32}9 < 4. So d 3. d \le 3. But the left side is > 2 , > 2, so both sides must be exactly 3. 3. In this case we get 1 x 1 + 1 y 1 + 1 x 1 y 1 = 1 2 2 y 1 + 2 x 1 + 2 = x 1 y 1 6 = ( x 1 2 ) ( y 1 2 ) \begin{aligned} \frac1{x_1}+\frac1{y_1}+\frac1{x_1y_1} &= \frac12 \\ 2y_1+2x_1+2 &= x_1y_1 \\ 6 &= (x_1-2)(y_1-2) \end{aligned} which leads to the solutions ( x 1 , y 1 ) = ( 3 , 8 ) , ( 4 , 5 ) , (x_1,y_1) = (3,8),(4,5), which becomes ( x , y ) = ( 9 , 24 ) , ( 12 , 15 ) . (x,y) = (9,24),(12,15).

Now suppose x 1 = 2. x_1=2. In this case we get 3 ( 1 + 1 y 1 ) = d , 3 \left(1+\frac1{y_1} \right) = d, and the only way d d can be an integer is if 3 / y 1 3/y_1 is an integer, so y 1 = 3. y_1 = 3. (Remember x 1 y 1 . x_1 \le y_1. ) This leads to the solution ( x , y ) = ( 8 , 12 ) . (x,y) = (8,12).

Finally, if x 1 = 1 , x_1=1, we get 4 ( 1 + 1 y 1 ) = d , 4 \left( 1+\frac1{y_1} \right) = d, and this only works if y 1 = 1 , 2 , 4 , y_1 = 1,2,4, which leads to the solutions ( 8 , 8 ) , ( 6 , 12 ) , ( 5 , 20 ) . (8,8), (6,12), (5,20).

So there are six solutions in all with x 1 y 1 , x_1 \le y_1, which leads to eleven total solutions (not twelve because ( 8 , 8 ) (8,8) doesn't change when we switch x x and y y ). Doing the computation, we get an answer of 1772 . \fbox{1772}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...