x 1 + y 1 + g cd ( x , y ) 1 + lcm ( x , y ) 1 = 2 1
Let x and y be positive integers that satisfy the equation above.
If the solution pairs ( x , y ) are ( x 1 , y 1 ) , ( x 2 , y 2 ) , ( x 3 , y 3 ) , … , ( x n , y n ) , find i = 1 ∑ n ( x i 2 − y i ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I did more or less the same solution as Steven, just looking at bounding x instead of d .
So write x = d x 1 , y = d y 1 where x 1 , y 1 are relatively prime. Then we have d x 1 1 + d y 1 1 + d 1 + d x 1 y 1 1 x 1 2 + y 1 2 + 2 + x 1 y 1 2 2 ( 1 + x 1 1 ) ( 1 + y 1 1 ) = 2 1 = d = d Suppose for now that x 1 ≤ y 1 (i.e. x ≤ y ).
Now suppose x 1 ≥ 3 . Then the product on the left is at most 2 ⋅ 3 4 ⋅ 3 4 = 9 3 2 < 4 . So d ≤ 3 . But the left side is > 2 , so both sides must be exactly 3 . In this case we get x 1 1 + y 1 1 + x 1 y 1 1 2 y 1 + 2 x 1 + 2 6 = 2 1 = x 1 y 1 = ( x 1 − 2 ) ( y 1 − 2 ) which leads to the solutions ( x 1 , y 1 ) = ( 3 , 8 ) , ( 4 , 5 ) , which becomes ( x , y ) = ( 9 , 2 4 ) , ( 1 2 , 1 5 ) .
Now suppose x 1 = 2 . In this case we get 3 ( 1 + y 1 1 ) = d , and the only way d can be an integer is if 3 / y 1 is an integer, so y 1 = 3 . (Remember x 1 ≤ y 1 . ) This leads to the solution ( x , y ) = ( 8 , 1 2 ) .
Finally, if x 1 = 1 , we get 4 ( 1 + y 1 1 ) = d , and this only works if y 1 = 1 , 2 , 4 , which leads to the solutions ( 8 , 8 ) , ( 6 , 1 2 ) , ( 5 , 2 0 ) .
So there are six solutions in all with x 1 ≤ y 1 , which leads to eleven total solutions (not twelve because ( 8 , 8 ) doesn't change when we switch x and y ). Doing the computation, we get an answer of 1 7 7 2 .
Problem Loading...
Note Loading...
Set Loading...
Let g cd ( x , y ) = d for some positive integer d . We can write x = d x 1 , y = d y 1 , where g cd ( x 1 , y 1 ) = 1 since otherwise the greatest common divisor of x and y would not be d . We can also write
lcm ( x , y ) 1 = x y g cd ( x , y ) = d x 1 d y 1 d = d x 1 y 1 1 .
Our equation rewrites as
x 1 + y 1 + g cd ( x , y ) 1 + lcm ( x , y ) 1 d x 1 1 + d y 1 1 + d 1 + d x 1 y 1 1 d 1 ( x 1 1 + y 1 1 + 1 + x 1 y 1 1 ) x 1 1 + y 1 1 + x 1 y 1 1 = 2 1 = 2 1 = 2 1 = 2 d − 2 .
Notice that this equation implies d ≥ 3 , since the LHS of the equality is a positive value. Also, if we set x 1 , y 1 = 1 , we get the maximum possible value of x 1 1 + y 1 1 + x 1 y 1 1 , which is 3. So, 2 d − 2 ≤ 3 , or d ≤ 8 .
Continuing on, we have
x 1 1 + y 1 1 + x 1 y 1 1 2 ( x 1 + y 1 + 1 ) ( d − 2 ) x 1 y 1 − 2 x 1 − 2 y 1 ( d − 2 ) 2 x 1 y 1 − 2 ( d − 2 ) x 1 − 2 ( d − 2 ) y 1 ( d − 2 ) x 1 [ ( d − 2 ) y 1 − 2 ] − 2 [ ( d − 2 ) y 1 − 2 ] [ ( d − 2 ) x 1 − 2 ] [ ( d − 2 ) y 1 − 2 ] = 2 d − 2 = ( d − 2 ) x 1 y 1 = 2 = 2 ( d − 2 ) = 2 ( d − 2 ) + 4 = 2 d .
Now, we examine each possible value of d :
d 3 4 5 6 7 8 Corresponding equation ( x 1 − 2 ) ( y 1 − 2 ) = 6 ( x 1 − 1 ) ( y 1 − 1 ) = 2 ( 3 x 1 − 2 ) ( 3 y 1 − 2 ) = 1 0 ( 2 x 1 − 1 ) ( 2 y 1 − 1 ) = 3 ( 5 x 1 − 2 ) ( 5 y 1 − 2 ) = 1 4 ( 3 x 1 − 1 ) ( 3 y 1 − 1 ) = 4 Solutions for ( x 1 , y 1 ) ( 3 , 8 ) , ( 4 , 5 ) , ( 5 , 4 ) , ( 8 , 3 ) ( 2 , 3 ) , ( 3 , 2 ) ( 1 , 4 ) , ( 4 , 1 ) ( 1 , 2 ) , ( 2 , 1 ) none ( 1 , 1 ) Solutions for ( x , y ) ( 9 , 2 4 ) , ( 1 2 , 1 5 ) , ( 1 5 , 1 2 ) , ( 2 4 , 9 ) ( 8 , 1 2 ) , ( 1 2 , 8 ) ( 5 , 2 0 ) , ( 2 0 , 5 ) ( 6 , 1 2 ) , ( 1 2 , 6 ) none ( 8 , 8 )
In sum, there are n = 1 1 solutions to the original equation, which are:
( x , y ) = ( 9 , 2 4 ) , ( 1 2 , 1 5 ) , ( 1 5 , 1 2 ) , ( 2 4 , 9 ) ( 8 , 1 2 ) , ( 1 2 , 8 ) , ( 5 , 2 0 ) , ( 2 0 , 5 ) ( 6 , 1 2 ) , ( 1 2 , 6 ) , ( 8 , 8 ) .
Thus, i = 1 ∑ 1 1 ( x i 2 − y i ) = 1 7 7 2 .