Inverse Dilemma

Geometry Level 3

{ cos 1 x + cos 1 y + cos 1 z = 0 sin 1 x + cos 1 y + tan 1 z = ? \large \begin{cases} \cos^{-1}x + \cos^{-1}y + \cos^{-1}z = 0 \\ \\ \sin^{-1}x + \cos^{-1} y + \tan^{-1} z = \ ? \end{cases}

Details :

  • 1 x , y , z 1 -1 \leq x , y , z \leq 1
Insufficient Information Not Defined 3 3 3 π 4 \dfrac{3\pi}{4} π 2 \dfrac{\pi}{2} π \pi π 4 \dfrac{\pi}{4} 0 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akhil Bansal
Oct 8, 2015

Observe that minimum value of cos 1 ( x ) \color{#3D99F6}{\cos^{-1}(x)} function is zero.
Therfore, cos 1 x + cos 1 y + cos 1 z = 0 \cos^{-1} x + \cos^{-1} y + \cos^{-1} z = 0 only when cos 1 x = cos 1 y = cos 1 z = 0 \cos^{-1}x = \cos^{-1} y = \cos^{-1} z = 0
Hence, x = y = z = 1 x \ = \ y \ = \ z = 1

sin 1 1 + cos 1 1 + tan 1 1 = π 2 + 0 + π 4 = 3 π 4 \Rightarrow \sin^{-1} 1 + \cos^{-1} 1 + \tan^{-1} 1 = \dfrac{\pi}{2} + 0 + \dfrac{\pi}{4} = \dfrac{3\pi}{4}

Perhaps add that x , y , z x, y, z are values from -1 to 1?

Calvin Lin Staff - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...