Inverse Fibonacci

a = i = 1 F i 1 0 i + 1 , a = \displaystyle \sum_{i=1}^{\infty} \frac {F_i}{10^{i+1}},

where F i F_i are the Fibonacci numbers satisfying the relation F i + 1 = F i + F i 1 F_{i+1}=F_i+F_{i-1} with F 1 = 1 , F 2 = 1 F_1=1,F_2=1 .

Let α , β \alpha,\beta be the two (not necessarily distinct) solutions of the quadratic equation a 2 x 2 2 a x + 1 a 2 = 0 a^2x^2-2ax+1-a^2=0 .

Find the value of α 2 β 2 \large{|\alpha^2-\beta^2|} .


The answer is 356.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ronak Agarwal
Feb 18, 2015

Let's find the generating function for the fibbonacci series :

F ( x ) = n = 1 F n x n . F(x) = \sum_{n=1}^\infty F_n x^n.

Using the fact that F n = F n 1 + F n 2 F_n = F_{n-1} + F_{n-2} for n 3 n \geq 3 , we get that:

F ( x ) = F 1 x 1 + F 2 x 2 + n = 3 ( F n 1 + F n 2 ) x n = x + x 2 + n = 3 F n 1 x n + n = 3 F n 2 x n = x + x 2 + ( x 2 + t = 1 F t x t + 1 ) + ( s = 1 F s x s + 2 ) = x + x F ( x ) + x 2 F ( x ) \begin{array} { l l } F(x) & = F_1x^1 + F_2x^2 + \sum_{n=3}^{\infty} ( F_{n-1} + F_{n-2} ) x^n \\ & = x + x^2 + \sum_{n=3}^{\infty} F_{n-1} x^n + \sum_{n=3}^{\infty} F_{n-2} x^n \\ & = x + x^2 + \left( -x^2 + \sum_{t=1}^\infty F_t x^{t+1} \right) + \left( \sum_{s=1}^\infty F_s x^{s+2 } \right) \\ & = x + x F(x) + x^2 F(x) \end{array}

Thus, we get that F ( x ) = x 1 x x 2 F(x) = \frac{x}{ 1 - x - x^2 } .

Now, substituting in x = 1 10 x = \frac{1}{10} , we obtain that

a = 1 10 × i = 1 F i 1 0 i = 1 10 F ( 1 10 ) = 1 10 × 1 10 1 1 10 ( 1 10 ) 2 = 1 89 . a = \frac{1}{10} \times \sum_{i=1}^{\infty} \frac{ F_i} { 10^{i} } = \frac{1}{10} F ( \frac{1}{10} ) = \frac{1}{10} \times \frac{ \frac{1}{10} } { 1 - \frac{1}{10} - \left(\frac{1}{10} \right)^2 } = \frac{1}{89}.

From this, the solutions to a 2 x 2 2 a x + 1 a 2 a^2 x^2 - 2ax + 1 - a^2 are { α , β } = { 90 , 88 } \{ \alpha, \beta \} = \{ 90, 88 \} , and so α 2 β 2 = 9 0 2 8 8 2 = 356 | \alpha^2 - \beta^2| = 90^2 - 88^2 = 356 .

Bob Kadylo
Nov 27, 2016

1 100 + 1 1000 + 2 10000 + 3 100000 + . . . = 1 89 \frac {1}{100}+\frac {1}{1000}+\frac {2}{10000}+\frac {3}{100000}+... = \frac{1}{89}

which leads to : α = 90 , β = 88 \alpha = 90 , \beta = 88 and a final answer of 9 0 2 8 8 2 = 356 90^2-88^2=\boxed{\boxed {356}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...