Inverse fun

Calculus Level 4

lim x ( x + 5 ) tan 1 ( x + 5 ) ( x + 1 ) tan 1 ( x + 1 ) x 2 + 1 + tan 1 ( x ) x \large \lim_{x\to \infty} \dfrac{ (x+5)\tan^{-1}(x+5)-(x+1)\tan^{-1}(x+1)}{\sqrt{x^2+1}+\tan^{-1}(x)-x}

Find the value of the above limit.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 22, 2017

Relevant wiki: L'Hopital's Rule - Basic

L = lim x ( x + 5 ) tan 1 ( x + 5 ) ( x + 1 ) tan 1 ( x + 1 ) x 2 + 1 + tan 1 x x = lim x x ( tan 1 ( x + 5 ) tan 1 ( x + 1 ) ) + 5 tan 1 ( x + 5 ) tan 1 ( x + 1 ) ( x 2 + 1 x ) ( x 2 + 1 + x ) x 2 + 1 + x + tan 1 x = lim x x ( tan 1 ( x + 5 ) tan 1 ( x + 1 ) ) + 5 tan 1 ( x + 5 ) tan 1 ( x + 1 ) 1 x 2 + 1 + x + tan 1 x = lim x tan 1 ( x + 5 ) tan 1 ( x + 1 ) 1 / x + 5 tan 1 ( x + 5 ) tan 1 ( x + 1 ) 1 x 2 + 1 + x + tan 1 x A 0/0 case, L’H o ˆ pital’s rule applies. = lim x 1 / ( 1 + ( x + 5 ) 2 ) 1 / ( 1 + ( x + 1 ) 2 ) 1 / x 2 + 5 tan 1 ( x + 5 ) tan 1 ( x + 1 ) 1 x 2 + 1 + x + tan 1 x Differentiate up and down w.r.t x . = lim x x 2 1 + ( x + 1 ) 2 x 2 1 + ( x + 5 ) 2 + 5 tan 1 ( x + 5 ) tan 1 ( x + 1 ) 1 x 2 + 1 + x + tan 1 x Divide up and down by x 2 . = lim x 1 1 / x 2 + ( x + 1 ) 2 / x 2 1 1 / x 2 + ( x + 5 ) 2 / x 2 + 5 tan 1 ( x + 5 ) tan 1 ( x + 1 ) 1 x 2 + 1 + x + tan 1 x = 1 1 + 5 π 2 π 2 0 + π 2 = 4 \begin{aligned} L & = \lim_{x \to \infty} \frac {(x+5)\tan^{-1}(x+5)-(x+1)\tan^{-1}(x+1)}{\sqrt{x^2+1}+\tan^{-1} x-x} \\ & = \lim_{x \to \infty} \frac {x\left(\tan^{-1}(x+5)-\tan^{-1}(x+1)\right)+5\tan^{-1}(x+5)-\tan^{-1}(x+1)}{\frac {\left(\sqrt{x^2+1}-x\right)\left(\sqrt{x^2+1}+x\right)}{\sqrt{x^2+1}+x}+\tan^{-1} x} \\ & = \lim_{x \to \infty} \frac {x\left(\tan^{-1}(x+5)-\tan^{-1}(x+1)\right)+5\tan^{-1}(x+5)-\tan^{-1}(x+1)}{\frac 1{\sqrt{x^2+1}+x}+\tan^{-1} x} \\ & = \lim_{x \to \infty} \frac {{\color{#3D99F6}\frac {\tan^{-1}(x+5)-\tan^{-1}(x+1)}{1/x}}+5\tan^{-1}(x+5)-\tan^{-1}(x+1)}{\frac 1{\sqrt{x^2+1}+x}+\tan^{-1} x} & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies.} \\ & = \lim_{x \to \infty} \frac {{\color{#3D99F6}\frac {1/(1+(x+5)^2)-1/(1+(x+1)^2)}{-1/x^2}}+5\tan^{-1}(x+5)-\tan^{-1}(x+1)}{\frac 1{\sqrt{x^2+1}+x}+\tan^{-1} x} & \small \color{#3D99F6} \text{Differentiate up and down w.r.t }x. \\ & = \lim_{x \to \infty} \frac {{\color{#3D99F6}\frac {x^2}{1+(x+1)^2}-\frac {x^2}{1+(x+5)^2}}+5\tan^{-1}(x+5)-\tan^{-1}(x+1)}{\frac 1{\sqrt{x^2+1}+x}+\tan^{-1} x} & \small \color{#3D99F6} \text{Divide up and down by }x^2. \\ & = \lim_{x \to \infty} \frac {{\color{#3D99F6}\frac 1{1/x^2+(x+1)^2/x^2}-\frac 1{1/x^2+(x+5)^2/x^2}}+5\tan^{-1}(x+5)-\tan^{-1}(x+1)}{\frac 1{\sqrt{x^2+1}+x}+\tan^{-1} x} \\ & = \frac {{\color{#3D99F6}1-1}+\frac {5\pi} 2-\frac \pi 2}{0+\frac \pi 2} \\ & = \boxed{4} \end{aligned}

How is lim x x ( tan 1 ( x + 5 ) tan 1 ( x + 1 ) ) = 0 \displaystyle \lim_{x\to \infty} x(\tan^{-1}(x+5)-\tan^{-1}(x+1))=0 ?

Akshat Sharda - 3 years, 7 months ago

Log in to reply

Sorry, I have added an explanation.

Chew-Seong Cheong - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...