Inverse Function

Algebra Level 1

If f ( x ) = 16 x + 3 f(x) = 16x + 3 , what is the value of f 1 ( 3 ) f^{-1}(3) ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Viki Zeta
Oct 16, 2016

Relevant wiki: Inverse Functions

f ( x ) = 16 x + 3 To get f 1 ( x ) just change x to f 1 and f(x) to x x = 16 f 1 ( x ) + 3 x 3 = 16 f 1 ( x ) f 1 ( x ) = x 3 16 f 1 ( 3 ) = 3 3 16 = 0 16 = 0 f(x) = 16x + 3 \\ \text{To get }f^{-1}(x) \text{ just change x to }f^{-1} \text{ and f(x) to x} \\ x = 16f^{-1}(x) + 3 \\ x- 3 = 16f^{-1}(x) \\ f^{-1}(x) = \dfrac{x-3}{16} \\ f^{-1}(3) = \dfrac{3-3}{16} = \dfrac{0}{16} = 0

Thank you...

Raihan Fauzan - 4 years, 8 months ago
Raihan Fauzan
Oct 16, 2016

Relevant wiki: Inverse Functions

f ( x ) = y = 16 x + 3 f(x) = y = 16x + 3

f 1 ( y ) = x = y 3 16 f^{-1}(y) = x = \frac{y - 3}{16}

f 1 ( x ) = x 3 16 f^{-1}(x) = \frac{x - 3}{16}

f 1 ( 3 ) = 3 3 16 = 0 f^{-1}(3) = \frac{3 - 3}{16} = \boxed{0}

Gia Hoàng Phạm
Nov 24, 2018

Relevant wiki: Inverse Functions

f 1 ( 3 ) = x f ( x ) = 3 16 x + 3 = 3 16 x = 0 x = 0 f^{-1}(3)=x \implies f(x)=3 \implies 16x+3=3 \implies 16x=0 \implies x=0

That’s how I solved it too!

Vincent Lancaster - 1 month, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...