Inverse functions of x x

Geometry Level 3

Determine the value of x x in the following equation.

sin 1 ( x ) cos 1 ( x ) = π 6 \sin^{-1}(x) - \cos^{-1}(x)=\dfrac{\pi}{6}

1 2 \frac{1}{2} 2 2 \frac{\sqrt{2}}{2} no answer 3 2 \frac{\sqrt{3}}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
May 3, 2016

Using Formula : sin 1 ( x ) + cos 1 ( x ) = π 2 ,We get π 2 2 c o s 1 ( x ) = π 6 2 c o s 1 ( x ) = 3 π 6 π 6 c o s 1 ( x ) = π 6 x = 3 2 \text {Using Formula : } \sin^{-1}(x)+\cos^{-1}(x)=\dfrac{\pi}2 \text { ,We get }\\ \implies \dfrac{\pi}{2}-2cos^{-1}(x)=\dfrac{\pi}6 \\ \implies 2cos^{-1}(x)=\dfrac{3\pi}{6}-\dfrac{\pi}6 \\ \implies cos^{-1}(x)=\dfrac{\pi}6 \\ \implies \color{#3D99F6}{\boxed{x=\dfrac{\sqrt3}2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...