Inverse Matrix and Function

Algebra Level 3

True or False?

If A = [ a b c d ] A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} and its inverse is A 1 = [ a b c d ] A^{-1} = \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} , then the inverse of f ( x ) = a x + b c x + d f(x) = \frac{ax + b}{cx + d} is f 1 ( x ) = a x + b c x + d f^{-1}(x) = \frac{a'x + b'}{c'x + d'} .

True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
Nov 24, 2018

The inverse of A = [ a b c d ] A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} is A 1 = 1 a d b c [ d b c a ] A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} , so a = d a d b c a' = \frac{d}{ad - bc} , b = b a d b c b' = \frac{-b}{ad - bc} , c = c a d b c c' = \frac{-c}{ad - bc} , and d = a a d b c d' = \frac{a}{ad - bc} .

Since f ( x ) = a x + b c x + d f(x) = \frac{ax + b}{cx + d} , x = a f 1 ( x ) + b c f 1 ( x ) + d x = \frac{af^{-1}(x) + b}{cf^{-1}(x) + d} , which solves to f 1 ( x ) = d x b c x + a f^{-1}(x) = \frac{dx - b}{-cx + a} = d a d b c x + b a d b c c a d b c x + a a d b c \frac{\frac{d}{ad - bc}x + \frac{-b}{ad - bc}}{\frac{-c}{ad - bc}x + \frac{a}{ad - bc}} .

Substituting a a' , b b' , c c' , and d d' gives f 1 = a x + b c x + d f^{-1} = \frac{a'x + b'}{c'x + d'} , so the statement is true .

Otto Bretscher
Nov 21, 2018

We have a group homomorphism ( T [ a b c d ] ) ( x ) = a x + b c x + d \Big( T \begin{bmatrix} a & b \\ c & d \end{bmatrix}\Big)(x)=\frac{ax+b}{cx+d} from G L 2 ( R ) GL_2(\mathbb{R}) to the group of linear fractional maps over R \mathbb{R} . Thus ( T ( A ) ) 1 = T ( A 1 ) (T(A))^{-1}=T(A^{-1}) is T r u e \boxed{True} .

Am I correct in suspecting that this holds for all invertible 2 × 2 2 \times 2 matrices A A , not merely those with determinant 1 ?

Thanks for your solution! Yes, now that I look at this again, the det(A) = 1 is not a necessary condition. I think I'll edit the problem and take that out.

David Vreken - 2 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...