∫ 0 1 ( ( 1 − x 1 8 ) 2 0 1 − ( 1 − x 2 0 ) 1 8 1 ) d x
Evaluate the integral above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I = ∫ 0 1 ( ( 1 − x 1 8 ) 2 0 1 − ( 1 − x 2 0 ) 1 8 1 ) d x = ∫ 0 1 ( 1 − x 1 8 ) 2 0 1 d x − ∫ 0 1 ( 1 − x 2 0 ) 1 8 1 d x = ∫ 0 1 1 8 u 1 8 1 7 ( 1 − u ) 2 0 1 d u − ∫ 0 1 2 0 v 2 0 1 9 ( 1 − v ) 1 8 1 d v = 1 8 1 B ( 1 8 1 , 2 0 2 1 ) − 2 0 1 B ( 2 0 1 , 1 8 1 9 ) = 1 8 Γ ( 1 8 0 1 9 9 ) Γ ( 1 8 1 ) Γ ( 2 0 2 1 ) − 2 0 Γ ( 1 8 0 1 9 9 ) Γ ( 2 0 1 ) Γ ( 1 8 1 9 ) = 1 8 Γ ( 1 8 0 1 9 9 ) Γ ( 1 8 1 ) ⋅ 2 0 1 Γ ( 2 0 1 ) − 2 0 Γ ( 1 8 0 1 9 9 ) Γ ( 2 0 1 ) ⋅ 1 8 1 Γ ( 1 8 1 ) = 0 Let u = x 1 8 ⟹ d u = 1 8 x 1 7 d x Let v = x 2 0 ⟹ d v = 2 0 x 1 9 d x Beta function B ( m , n ) = ∫ 0 1 t m − 1 ( 1 − t ) n − 1 d t B ( m , n ) = Γ ( m + n ) Γ ( m ) Γ ( n ) , where Γ ( ⋅ ) denotes gamma function Note that Γ ( 1 + x ) = x Γ ( x )
References:
Coz you know the identity;
∫ a b f ( x ) d x + ∫ f ( a ) f ( b ) f − 1 ( x ) d x = b f ( b ) − a f ( a )
the rest is a big ZERO.
There is a slight typo on the second integral. Where it says f ( f − 1 ( x ) ) , it should be just f − 1 ( x ) .
Problem Loading...
Note Loading...
Set Loading...
Let's find a relationship between ( 1 − x 1 8 ) 2 0 1 and ( 1 − x 2 0 ) 1 8 1 , as you may guess from the title, they are inverses of each other.
This is because if we let the following:
y = ( 1 − x 1 8 ) 2 0 1 ⇒ y 2 0 = 1 − x 1 8 ⇒ x = ( 1 − y 2 0 ) 1 8 1 . which shows that they are inverses of each other.
Since we are integrating the function from 0 to 1 , we can check that the function and the inverse have the same area.
This is true if we plug in the values of x = 0 , 1 into y = ( 1 − x 1 8 ) 2 0 1 we will get y = 1 , 0
Then,
∫ 0 1 ( 1 − x 1 8 ) 2 0 1 − ( 1 − x 2 0 ) 1 8 1 d x
= ∫ 0 1 ( 1 − x 1 8 ) 2 0 1 d x − ∫ 0 1 ( 1 − x 2 0 ) 1 8 1 d x
= ∫ 0 1 ( 1 − x 1 8 ) 2 0 1 d x − ∫ 0 1 ( 1 − y 1 8 ) 2 0 1 d y
= 0 .