Inverse of Inverses

{ 1 a 1 b + c = 1 4 1 b 1 a + c = 1 10 1 c 1 a + b = 1 56 1 a b + 1 b c + 1 c a = 1 x \begin{cases} \dfrac{1}{a} - \dfrac{1}{b + c} = \dfrac{1}{4}\\ \dfrac{1}{b} - \dfrac{1}{a + c} = \dfrac{1}{10}\\ \dfrac{1}{c} - \dfrac{1}{a + b} = \dfrac{1}{56}\\ \dfrac{1}{ab} + \dfrac{1}{bc} + \dfrac{1}{ca} = \dfrac{1}{x} \end{cases}

Given that a , b a,b and c c are integers satisfying the system of equations above, find x x .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nabil Maani
Apr 12, 2016

How comes you can ignore negative integrs?

沂泓 纪 - 5 years, 2 months ago

Log in to reply

His/her solution is wrong.

Pi Han Goh - 5 years, 2 months ago

Is there a more elegant algebraic solution to this? The solution presented is better suited to a spreadsheet solver. Also, this solution incorrectly simplifies the problem by excluding zero and negative integers, e.g. 1: a=4, b+c=0; a=8, b+c=-8; etc.

James McCormick - 5 years, 2 months ago

Log in to reply

Unfortunately no. In fact, the solution written up is far from complete. Like you've already pointed, there are more possible integer solutions when solving for 1 a 1 b + c = 1 4 \dfrac1a -\dfrac1{b+c} = \dfrac14 . In fact, there are 9 such possible solutions. Plus, I doubt there is a non-tedious way to solve this question.

Pi Han Goh - 5 years, 2 months ago

zeros are implicitly excluded.

Abdelhamid Saadi - 5 years, 2 months ago
Abdelhamid Saadi
Apr 13, 2016

Let's try to prove it.

Lemme

The equation

1 x 1 s x = 1 n \frac{1}{x} - \frac{1}{s - x} = \frac{1}{n}

where x x , s s are unknown integers and n n a given integer, and x 0 x \neq 0 and s x 0 s - x \neq 0 ,

we have

( x , s ) = ( n ( d n ) d , n ( d n ) d + d n ) ) f o r d d i v i s o r o f n 2 a n d d n (x, s) = (\frac{n(d-n)}{d}, \frac{n(d-n)}{d} + d - n)) \quad for \quad d \quad divisor \quad of \quad n^2 \quad and \quad d \neq n

So that if we let s = a + b + c s = a + b + c we have:

From the first equality : ( a , s ) i s i n { ( 3 , 15 ) , ( 2 , 6 ) , ( 5 , 15 ) , ( 12 , 6 ) , ( 4 , 6 ) , ( 20 , 15 ) , ( 6 , 6 ) , ( 12 , 15 ) } (a, s) \quad is \quad in \quad \{(3, 15), (2, 6), (5, -15), (12, 6), (-4, -6), (20, 15), (6, -6), (-12, -15)\}

From the second equality : ( b , s ) i s i n { ( 14 , 21 ) , ( 30 , 15 ) , ( 90 , 99 ) , ( 60 , 48 ) , ( 10 , 15 ) , ( 40 , 48 ) , ( 15 , 21 ) , ( 9 , 99 ) , ( 6 , 21 ) , ( 35 , 21 ) , ( 11 , 99 ) , ( 5 , 15 ) , ( 12 , 48 ) , ( 110 , 99 ) , ( 8 , 48 ) , ( 15 , 15 ) } (b, s) \quad is \quad in \quad \{(14, -21), (30, 15), (-90, -99), (60, 48), (-10, -15), (-40, -48), (-15, -21), (9, 99), (6, 21), (35, 21), (11, -99), (5, 15), (12, -48), (110, 99), (8, 48), (15, -15)\}

Then only two value are possible for s s 15 or -15

Then

( a , s ) i s i n { ( 3 , 15 ) , ( 5 , 15 ) , ( 20 , 15 ) , ( 12 , 15 ) } (a, s) \quad is \quad in \quad \{(3, 15), (5, -15), (20, 15), (-12, -15)\}

and ( b , s ) i s i n { ( 30 , 15 ) , ( 10 , 15 ) , ( 5 , 15 ) , ( 15 , 15 ) } (b, s) \quad is \quad in \quad \{ (30, 15), (-10, -15), (5, 15), (15, -15)\}

From the third equality: ( c , s ) i s i n { ( 8 , 15 ) , ( 105 , 15 ) , ( 120 , 15 ) , ( 7 , 15 ) } (c, s) \quad is \quad in \quad \{(-8, -15), (105, -15), (120, 15), (7, 15)\}

if s = -15 then:

a = 5 o r a = 12 b = 10 o r b = 15 c = 8 o r c = 105 a=5\quad or\quad a=-12\\ b=-10\quad or\quad b=15\\ c=-8\quad or\quad c=105

No combination adds to -15.

if s = 15 then:

a = 3 o r a = 20 b = 5 o r b = 30 c = 7 o r c = 120 a=3\quad or\quad a=20\\ b=5\quad or\quad b=30\\ c=7\quad or\quad c=120

Only a = 3 and b = 5 and c = 7 adds to 15.

CQFD

Very good solution indeed! ;)

Worranat Pakornrat - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...