Inverse Quadratic Root Integral

Calculus Level 3

Let f ( x ) = a x 2 + b x + c f(x) = ax^2 + bx + c be a perfect square quadratic with domain x > 0 x>0 . Find a general expression for the following integral:

1 a x 2 + b x + c d x \int \frac{1}{\sqrt{ax^2+bx+c}} dx

Notation: C C denotes the constant of integration .

1 a ln ( x + c a ) + C \frac{1}{\sqrt{a}} \ln \bigg(x+\sqrt{\frac{c}{a}} \bigg) + C There is no solution. 1 a ln ( x + a b ) + C \frac{1}{\sqrt{a}} \ln \bigg( x + \sqrt{\frac{a}{b}} \bigg) + C 1 a ln ( x + c b ) + C \frac{1}{\sqrt{a}} \ln \bigg( x + \sqrt{\frac{c}{b}} \bigg) + C 1 a ln ( x + c a ) + C \frac{1}{\sqrt{a}} \ln \bigg( x+\frac{c}{a} \bigg) + C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 21, 2018

I = 1 a x 2 + b x + c d x If f ( x ) is a perfect square = 1 ( a x + c ) 2 d x f ( x ) = ( a x + c ) 2 = 1 a x + c d x = 1 a ( x + c a ) d x = 1 a ln ( x + c a ) + C where C is the constant of integration. \begin{aligned} I & = \int \frac 1{\sqrt{\color{#3D99F6}ax^2+bx+c}}dx & \small \color{#3D99F6} \text{If }f(x) \text{ is a perfect square} \\ & = \int \frac 1{\sqrt{\color{#3D99F6}\left(\sqrt ax+\sqrt c\right)^2}}dx & \small \color{#3D99F6} \implies f(x) = \left(\sqrt ax+\sqrt c\right)^2 \\ & = \int \frac 1{\sqrt ax+\sqrt c}dx \\ & = \int \frac 1{\sqrt a\left(x+\sqrt {\frac ca}\right)}dx \\ & = \boxed{\dfrac 1{\sqrt a}\ln \left(x+\sqrt {\frac ca}\right) + \color{#3D99F6} C} & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \end{aligned}

Denis Kartachov
Aug 20, 2018

Rewrite f ( x ) f(x) in the form:

a ( x 2 + b a x + c a ) a \big( x^2+\frac{b}{a}x+\frac{c}{a} \big) a ( x + b 2 a ) 2 + c a b 2 4 a 2 a \bigg( x+\frac{b}{2a} \bigg) ^2+\frac{c}{a}-\frac{b^2}{4a^2}

Perfect square means c a b 2 4 a 2 = 0 \frac{c}{a}-\frac{b^2}{4a^2} = 0 or

b 2 = 4 a c b^2 = 4ac

Therefore we get:

f ( x ) = a ( x + c a ) f(x) = a \bigg( x+\sqrt{\frac{c}{a}} \bigg)

The integral becomes ( for x > 0 x > 0 ) :

1 a ( x + c a ) 2 d x = 1 a ( x + c a ) d x \int \frac{1}{\sqrt{a \bigg( x+\sqrt{\frac{c}{a}} \bigg)^2}} dx = \int \frac{1}{\sqrt{a} \bigg( x+\sqrt{\frac{c}{a}} \bigg)} dx

Which clearly evaluates to:

1 a ( x + c a ) d x = 1 a ln ( x + c a ) + c o n s t . \int \frac{1}{\sqrt{a} \bigg( x+\sqrt{\frac{c}{a}} \bigg)} dx = \frac{1}{\sqrt{a}} \ln \bigg( x+\sqrt{\frac{c}{a}} \bigg) + const.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...