Inverse question of zeroes

(5n)! has 2014 trailing zeroes. What is n?


The answer is 1614.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 23, 2014

The number of trailing zeros Z Z of x ! x! is given by:

Z = i = 1 N x ! 5 i Z = \sum _{ i=1 }^{ N }{ \left\lfloor \frac { x! }{ { 5 }^{ i } } \right\rfloor } , where \left\lfloor \right\rfloor is the greatest integer function.

Therefore,

Z = 5 n 5 + 5 n 25 + 5 n 125 + . . . Z = \left\lfloor \frac { 5n }{ 5 } \right\rfloor + \left\lfloor \frac { 5n }{ 25 } \right\rfloor + \left\lfloor \frac { 5n }{ 125 } \right\rfloor + ...

= n + n 5 + n 25 + n 125 + . . . \quad = n + \left\lfloor \frac { n }{ 5 } \right\rfloor + \left\lfloor \frac { n }{ 25 } \right\rfloor + \left\lfloor \frac { n }{ 125 } \right\rfloor + ...

Since 5 5 = 3125 > Z 5^5 = 3125 > Z , it implies that:

2014 = n + n 5 + n 25 + n 125 + n 625 2014 = n + \left\lfloor \frac { n }{ 5 } \right\rfloor + \left\lfloor \frac { n }{ 25 } \right\rfloor + \left\lfloor \frac { n }{ 125 } \right\rfloor + \left\lfloor \frac { n }{ 625 } \right\rfloor

n ( 1 + 1 5 + 1 25 + 1 125 1 625 ) 2014 \Rightarrow n (1 + \frac{1}{5} + \frac{1}{25} + \frac{1}{125} \frac{1}{625}) \approx 2014

1.2486 n 2014 \quad 1.2486n \approx 2014

n 1612 \Rightarrow n \approx 1612

When n = 1612 n = 1612 , Z = 2012 Z = 2012 , therefore, n = 1612 + 2 = 1614 n = 1612+2 = \boxed{1614} , then Z = 2014 Z = 2014 .

yo..dude...thnkx for answer

Kaustubh Bhargao - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...