Inverse Squares Product

Calculus Level 3

Let

f ( n ) = i = 1 n ( 1 1 ( i + 1 ) 2 ) f(n)\quad =\quad \prod _{ i=1 }^{n }{ \left( 1-\frac { 1 }{ { \left( i+1 \right) }^{ 2 } } \right) }

Determine f ( 1999 ) f(1999) .


The answer is 0.50025.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Tasmeem Reza
Jul 16, 2014

t h e g i v e n e q u a t i o n i s f ( n ) = i = 1 n ( 1 1 ( i + 1 ) 2 ) the\: given\: equation\: is\: f(n)=\prod_{i=1}^{n}\left ( 1-\frac{1}{(i+1)^{2}} \right )

N o w , Now, f ( 1999 ) = i = 1 1999 ( 1 1 ( i + 1 ) 2 ) f(1999)=\prod_{i=1}^{1999}\left ( 1-\frac{1}{(i+1)^{2}} \right ) = i = 1 1999 ( ( i + 1 ) 2 1 ( i + 1 ) 2 ) =\prod_{i=1}^{1999}\left ( \frac{(i+1)^{2}-1}{(i+1)^{2}} \right ) = i = 1 1999 ( i 2 + 2 i ( i + 1 ) 2 ) =\prod_{i=1}^{1999}\left ( \frac{i^{2}+2i}{(i+1)^{2}} \right ) = i = 1 1999 ( i ( i + 2 ) ( i + 1 ) 2 ) =\prod_{i=1}^{1999}\left ( \frac{i(i+2)}{(i+1)^{2}} \right ) = i = 1 1999 ( i i + 1 × i + 2 i + 1 ) =\prod_{i=1}^{1999}\left ( \frac{i}{i+1}\times\frac{i+2}{i+1} \right ) = i = 1 1999 ( i i + 1 ) × i = 1 1999 ( i + 2 i + 1 ) =\prod_{i=1}^{1999}\left ( \frac{i}{i+1} \right ) \times \prod_{i=1}^{1999}\left ( \frac{i+2}{i+1} \right )

n o w , t h e f i r s t t e r m , now,\: the\: first\: term, i = 1 1999 ( i i + 1 ) = 1 2 × 2 3 × 3 4 × . . . × 1998 1999 × 1999 2000 \prod_{i=1}^{1999}\left ( \frac{i}{i+1} \right ) = \frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times ... \times \frac{1998}{1999} \times \frac{1999}{2000} = 1 2000 [ B e c u a s e e a c h t e r m t e l e s c o p e s ] =\frac{1}{2000} \: [Becuase\: each\: term\: telescopes]

a g a i n , t h e s e c o n d t e r m , again,\: the\: second\: term, i = 1 1999 ( i + 2 i + 1 ) = 3 2 × 4 3 × 5 4 × . . . × 2000 1999 × 2001 2000 \prod_{i=1}^{1999}\left ( \frac{i+2}{i+1} \right ) = \frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times ... \times \frac{2000}{1999} \times \frac{2001}{2000} = 2001 2 [ B e c u a s e e a c h t e r m t e l e s c o p e s ] =\frac{2001}{2} \: [Becuase\: each\: term\: telescopes]

T h u s w e g e t , Thus\: we\: get, i = 1 1999 ( i i + 1 ) × i = 1 1999 ( i + 2 i + 1 ) = 1 2000 × 2001 2 \prod_{i=1}^{1999}\left ( \frac{i}{i+1} \right ) \times \prod_{i=1}^{1999}\left ( \frac{i+2}{i+1} \right )=\frac{1}{2000}\times \frac{2001}{2} = 2001 4000 =\frac{2001}{4000} = 0.50025 =\boxed{0.50025}

Excellent work Tasmeem!

Steven Zheng - 6 years, 11 months ago

Log in to reply

Thank you.

tasmeem reza - 6 years, 11 months ago

i thought it ws telescopic series i did till 4th step but i cannot go further

Tvs Harish Naidu - 6 years, 10 months ago

Log in to reply

i did it with telescopic

Hafizh Ahsan Permana - 6 years, 10 months ago

Thank you for sharing this problem

Purushottam Purush - 6 years, 10 months ago

Excellent..I really appreciate your solutions and their clarity :)

Jayakumar Krishnan - 6 years, 10 months ago

Thanks! Really good

Abhishek Gupta - 6 years, 10 months ago
Steven Zheng
Jul 15, 2014

Try the product for the first few terms. You will notice that the result is f ( n ) = n + 2 2 ( n + 1 ) . f(n) = \frac {n+2}{2(n+1)}. Hence exact answer is 2001/4000.

We'll show that f(n) = (n+2)/(2(n+1)) and then let n = 1999 to get our answer of 0.50025.

First let's look at a single factor of our product series: (1 - 1/(i+1)^2) = ((i+1)^2 - 1)/(i+1)^2 = (i(i+2))/(i+1)^2 .

Now let's have a look at what our product series looks like with this substitution : f(n) = ((1(3))/(2^2)) ((2(4))/3^2) ... (((n-1)(n+1))/n^2) ((n(n+2))/(n+1)^2) = (n! * ((n+2)!)/2)/(n+1)!^2 =1/2 * n!/(n+1)! * (n+2)!/(n+1)! = 1/2* 1/(n+1) * (n+2) = (n+2)/(2(n+1)).

Plugging in 1999 into f(n), we have : f(1999) = (2001)/(2*(2000)) = 0.50025.

did the same way.

Niranjan Khanderia - 6 years, 10 months ago

It's very interesting that f(n) has the form (1/2) GAMMA(n+1.) GAMMA(n+3.)/GAMMA(n+2.)^2

Aravind Vishnu
Jul 26, 2014

Let there be k terms .The answer is [{(k/2)+1}/k+1]

After rewriting the difference of squares as ( n + 2 n + 1 ) ( n n + 1 ) (\frac{n + 2}{n + 1})(\frac{n}{n + 1}) we evaluate the first terms getting this:

( 3 2 ) ( 1 2 ) ( 4 3 ) ( 2 3 ) ( 5 4 ) ( 3 4 ) (\frac{3}{2})(\frac{1}{2})(\frac{4}{3})(\frac{2}{3})(\frac{5}{4})(\frac{3}{4}) \ldots .

The idea is to note that for an specific n n , the only terms that will not cancel are 1 2 \frac{1}{2} and the penultimate term (excepting n = 1 n = 1 , case in which both terms don't cancels). So for the case n = 1999 n = 1999 we're left with the terms ( 1 2 ) ( 2001 2000 ) (\frac {1}{2})(\frac{2001}{2000}) . Finally,

f ( 1999 ) = 2001 4000 = 0.50025 f(1999) = \frac{2001}{4000} = \boxed{0.50025} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...