Inverse tan series

Geometry Level 3

tan [ tan 1 ( 1 2 ) + tan 1 ( 2 9 ) + tan 1 ( 1 8 ) + tan 1 ( 2 25 ) + tan 1 ( 1 18 ) + ] \tan \left [ \tan^{-1}\left(\frac12\right)+\tan^{-1}\left(\frac29\right)+\tan^{-1}\left(\frac18\right)+\tan^{-1}\left(\frac2{25}\right)+\tan^{-1}\left(\frac1{18}\right)+\ldots \right]

What is the value of the expression above?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tanishq Varshney
Jun 22, 2015

T r = arctan ( 2 r + 1 ) 2 \large{T_{r}=\arctan (\frac{\sqrt{2}}{r+1})^{2}}

S = r = 1 arctan ( 2 r 2 + 2 r + 1 ) \large{S=\displaystyle \sum_{r=1}^{\infty} \arctan (\frac{2}{r^2+2r+1})}

S = r = 1 arctan ( ( r + 2 ) r 1 + r ( r + 2 ) ) \large{S=\displaystyle \sum_{r=1}^{\infty} \arctan (\frac{(r+2)-r}{1+r(r+2)})}

S = r = 1 arctan ( r + 2 ) arctan ( r ) \large{S=\displaystyle \sum_{r=1}^{\infty} \arctan (r+2)-\arctan (r)}

S = lim n arctan ( 3 n 2 + 7 n n 2 + 9 n + 10 ) \huge{S=\displaystyle \lim_{n\to \infty} \arctan (\frac{3n^2+7n}{n^2+9n+10})}

S = arctan ( 3 ) \large{S=\arctan (3)}

Very nice problem.

Panya Chunnanonda - 5 years, 11 months ago

Just a modification of the problem asked in JEE 2013.

Satyajit Mohanty - 5 years, 11 months ago

I'm not seeing that manipulation from the third to fourth line. Could you explain please?

Sal Gard - 5 years, 2 months ago

Please show how you got your general term....🙋

Dhruv Joshi - 4 years, 2 months ago
Wei Xian Lim
Jun 23, 2015

Let U = i = 1 n arctan ( 1 2 i 2 ) U=\sum_{i=1}^n\arctan\left(\frac{1}{2i^2}\right) and T = i = 1 n arctan ( 2 ( 2 i + 1 ) 2 ) T=\sum_{i=1}^n\arctan\left(\frac{2}{(2i+1)^2}\right) ,

It can be shown by induction that tan U = n n + 1 \tan U=\frac{n}{n+1} and tan T = 2 n 4 n + 5 \tan T=\frac{2n}{4n+5} .

Since S = U + T S = U + T ,

tan S = tan U + tan T 1 tan U tan T = lim n 6 n 2 + 7 n 2 n 2 + 9 n + 5 = 3 \tan S = \frac{\tan U+\tan T}{1-\tan U\tan T} = \lim_{n\to\infty}\frac{6n^2+7n}{2n^2+9n+5}=\boxed{3}

You and a another solution sender have different final term in which you apply limit ....why?

Dhruv Joshi - 4 years, 2 months ago
Jozofrend Horvath
Aug 17, 2016

Run a sequence in QB

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...