Inverse Tangent Identity

Geometry Level 4

tan 1 ( A B ) tan 1 ( 1 C ) = π 4 \tan^{-1} \left(\frac{A}{B}\right) - \tan^{-1}\left(\frac{1}{C}\right)= \frac{\pi}{4} , where A A , B B and C C are positive coprime integers such that A + B + C = 478 A + B + C = 478 .

Submit your answer as A 3 + B 3 + C 3 3 \sqrt[3]{A^{3} +B^{3} + C^{3}} .

Courtesy: Stewart Calculus Early Transcendentals Eighth Edition


The answer is 257.455846893.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 25, 2018

tan 1 ( A B ) tan 1 ( 1 C ) = π 4 Given A B 1 C 1 + A B C = 1 A C B B C + A = 1 A C B = B C + A A C B C = A + B A C B C + C = A + B + C Given that A + B + C = 478 C ( A B + 1 ) = 478 = 2 × 239 Both 2 and 239 are primes. \begin{aligned} \tan^{-1} \left(\frac AB\right) - \tan^{-1} \left(\frac 1C\right) & = \frac \pi 4 & \small \color{#3D99F6} \text{Given} \\ \implies \frac {\frac AB - \frac 1C}{1+\frac A{BC}} & = 1 \\ \frac {AC-B}{BC+A} & = 1 \\ AC - B & = BC+A \\ AC-BC & = A+B \\ AC-BC + C & = A+B+C & \small \color{#3D99F6} \text{Given that }A+B+C = 478 \\ \implies C(A-B+1) & = 478 = \color{#3D99F6} 2\times 239 & \small \color{#3D99F6} \text{Both 2 and 239 are primes.} \end{aligned}

Since 2 and 239 are both primes this means that C = 2 C = 2 or C = 239 C=239 . From:

tan 1 ( A B ) tan 1 ( 1 C ) = π 4 tan 1 ( A B ) = π 4 + tan 1 ( 1 C ) A B = 1 + 1 C 1 1 C \begin{aligned} \tan^{-1} \left(\frac AB\right) - \tan^{-1} \left(\frac 1C\right) & = \frac \pi 4 \\ \tan^{-1} \left(\frac AB\right) & = \frac \pi 4 + \tan^{-1} \left(\frac 1C\right) \\ \implies \frac AB & = \frac {1+\frac 1C}{1-\frac 1C} \end{aligned}

{ If C = 2 , A B = 1 + 1 2 1 1 2 = 3 1 A + B + C = 3 + 1 + 2 = 6 478 Rejected If C = 239 , A B = 1 + 1 239 1 1 239 = 120 119 A + B + C = 120 + 119 + 239 = 478 Accepted \implies \begin{cases} \text{If }C = 2, & \dfrac AB = \dfrac {1+\frac 12}{1-\frac 12} = \dfrac 31 & \implies A+B+C = 3+1+2= 6 \color{#D61F06} \ne 478 & \color{#D61F06} \text{Rejected} \\ \text{If }C = 239, & \dfrac AB = \dfrac {1+\frac 1{239}}{1-\frac 1{239}} = \dfrac {120}{119} & \implies A+B+C=120+119+239 \color{#3D99F6} = 478 & \color{#3D99F6} \text{Accepted} \end{cases}

Therefore, A 3 + B 3 + C 3 3 = 12 0 3 + 11 9 3 + 23 9 3 3 257.456 \sqrt[3]{A^3+B^3+C^3} = \sqrt[3]{120^3+119^3+239^3} \approx \boxed{257.456} .

Torus Wheel
Jun 24, 2018

The solution to this problem is on page 15 of this pdf file.

Actually,only 119,120,239 satisfies the second and third equation.I didn't use the first equation.

X X - 2 years, 11 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...