If ∫ 0 e π arcsin ( 2 i ( x − x 1 ) ) d x = A , find ℜ ( A ) + ℑ ( A ) .
Notations:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We will first consider the relation cos θ = 2 e i θ + e − i θ , as to why the sin relation is not used here as a more natural means is attributed to the latter fact that some minus signs will not work out, the cos θ relation works out better
Now upon substitution of θ = − i ln ( i x ) ,
cos ( − i ln ( i x ) ) = 2 e i × i ln ( i x ) + e − i × i ln ( i x )
2 e i × i ln ( i x ) + e − i × i ln ( i x ) = 2 i x + i x 1 = 2 x i ( x − 1 )
∴ cos ( − i ln ( i x ) ) = 2 x i ( x − 1 ) ∗
− i ln ( i x ) = arccos ( 2 x i ( x − 1 ) )
Note: if the sin θ relation were used, the result would have been 2 x i ( x + 1 )
Now, arcsin θ = − arccos θ + 2 π
∴ arcsin 2 x i ( x − 1 ) = − arccos 2 x i ( x − 1 ) + 2 π = − ( − i ln ( i x ) ) + 2 π = i ln ( i x ) + 2 π
Now, i ln ( i x ) + 2 π = i ln ( i ) + 2 π + i ln ( x )
Where i ln ( i ) = ln i i = ln ( e − 2 π ) = − 2 π , the expression simplifies down to just i ln ( x )
The question at hand now becomes ∫ 0 e π 2 1 i ln ( x ) d x and by means of contour integration,
∫ 0 e π 2 1 i ln ( x ) d x = i ∫ 0 e π 2 1 ln ( x ) d x = i [ x ln ( x ) − x ] 0 e π = 2 1 i e π ( π − 1 )
∴ ℜ ( A ) + ℑ ( A ) = 0 + 2 1 e π ( π − 1 ) = 2 4 . 7 7 8 9 6 8 6 7
*As to why cos ( i ln ( i x ) ) = 2 x i ( x − 1 ) can't be used instead feels intuitively clear, but i don't have a rigorous justification.
First we look at how we arrive at the form arcsin ( 2 x i ( x − 1 ) ) from another form, from which we can equate this to a much simpler representation.
Consider the integral ∫ 1 + x 2 1 d x = arctan ( x )
1 + x 2 1 = 2 1 ( 1 + i x 1 + 1 − i x 1 )
∫ 2 1 ( 1 + i x 1 + 1 − i x 1 ) d x = arctan x
2 i 1 ( ln ( 1 + i x ) − ln ( 1 − i x ) ) = arctan x
2 i 1 ( ln ( 1 − i x ) ( 1 + i x ) ) = arctan x
Let m = ( 1 − i x ) ( 1 + i x ) , rearranging we have
x = i × m + 1 1 − m
i 1 = i − 1 × ( i 2 ) = − i
2 i 1 ( ln m ) = arctan ( i × m + 1 1 − m )
we know,
arctan ( q ) = arcsin ( 1 + q 2 q )
Let q = i × m + 1 1 − m
we have arctan ( i × m + 1 1 − m ) = arcsin ⎝ ⎛ 1 + ( i × m + 1 1 − m ) 2 i × m + 1 1 − m ⎠ ⎞
arcsin ⎝ ⎛ 1 + ( i × m + 1 1 − m ) 2 i × m + 1 1 − m ⎠ ⎞ = arcsin ⎝ ⎜ ⎜ ⎛ ( m + 1 ) ( m + 1 ) 2 + ( i 2 × ( 1 − m ) 2 ) i × ( 1 − m ) × ( m + 1 ) ⎠ ⎟ ⎟ ⎞
= arcsin ⎝ ⎛ ( m + 1 ) 2 − ( 1 − m ) 2 i × ( 1 − m ) ⎠ ⎞ = arcsin ( m 2 + 2 m + 1 − ( m 2 − 2 m + 1 ) i × ( 1 − m ) ) = arcsin ( 2 m i × ( m − 1 ) )
We have
arcsin ( 2 m i × ( 1 − m ) ) = arctan ( i × m + 1 1 − m ) = 2 i 1 ( ln m )
i 1 = i − 1 × ( i 2 ) = − i
arcsin ( 2 m i × ( 1 − m ) ) = 2 − i ( ln m )
But we know arcsin ( − x ) = − arcsin x
So we rearrange again to obtain − arcsin ( 2 m i × ( m − 1 ) ) = 2 − i ( ln m )
arcsin ( 2 m i × ( m − 1 ) ) = 2 i ( ln m )
∫ 0 e π arcsin ( 2 m i × ( m − 1 ) ) d m = ∫ 0 e π 2 i ( ln m ) d m
∫ 0 e π 2 i ( ln m ) d m = 2 i × m ( ln m − 1 ) ∣ ∣ ∣ ∣ ∣ 0 e π
I = 2 i × m ( ln m − 1 ) ∣ ∣ ∣ ∣ ∣ 0 e π = 2 i × e π ( π − 1 ) = 0 + 2 4 . 7 7 8 9 i
ℜ ( I ) = 0
ℑ ( I ) = 2 4 . 7 7 8 9
this can also be derived from hyperbolic sine function
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 0 e π sin − 1 ( 2 i ( x − x 1 ) ) d x = ∫ 0 e π sin − 1 ( 2 i ( e 2 ln x − e − 2 ln x ) ) d x = ∫ 0 e π sin − 1 ( 2 i ( e − i ( i 2 ln x ) − e i ( i 2 ln x ) ) ) d x = ∫ 0 e π sin − 1 ( sin ( i 2 ln x ) ) d x = ∫ 0 e π i 2 ln x d x = 2 i x ( ln x − 1 ) ∣ ∣ ∣ ∣ 0 e π = 2 i e π ( π − 1 )
Therefore, ℜ ( A ) + ℑ ( A ) = 0 + 2 e π ( π − 1 ) ≈ 2 4 . 7 7 9 .