inverse trigonometric complex integral?

Calculus Level 5

If 0 e π arcsin ( i 2 ( x 1 x ) ) d x = A \displaystyle \int_{0}^{e^{\pi}} \arcsin \left(\frac{i}{2} \left(\sqrt{x} -\frac{1}{\sqrt{x}}\right)\right) dx = A , find ( A ) + ( A ) \Re\left( A\right) +\Im\left(A\right) .

Notations:


The answer is 24.778.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

I = 0 e π sin 1 ( i 2 ( x 1 x ) ) d x = 0 e π sin 1 ( i 2 ( e ln x 2 e ln x 2 ) ) d x = 0 e π sin 1 ( i 2 ( e i ( i ln x 2 ) e i ( i ln x 2 ) ) ) d x = 0 e π sin 1 ( sin ( i ln x 2 ) ) d x = 0 e π i ln x 2 d x = i x ( ln x 1 ) 2 0 e π = i e π ( π 1 ) 2 \begin{aligned} I & = \int_0^{e^\pi} \sin^{-1} \left(\frac i2 \left(\sqrt x - \frac 1{\sqrt x}\right)\right) dx \\ & = \int_0^{e^\pi} \sin^{-1} \left(\frac i2 \left(e^{\frac {\ln x}2} - e^{-\frac {\ln x}2}\right)\right) dx \\ & = \int_0^{e^\pi} \sin^{-1} \left(\frac i2 \left(e^{-i \left(i\frac {\ln x}2\right)} - e^{i\left(i\frac {\ln x}2\right)}\right)\right) dx \\ & = \int_0^{e^\pi} \sin^{-1} \left(\sin \left(i\frac {\ln x}2\right)\right) dx \\ & = \int_0^{e^\pi} i\frac {\ln x}2 dx \\ & = \frac {ix(\ln x -1)}2 \bigg|_0^{e^\pi} \\ & = \frac {ie^\pi (\pi - 1)}2 \end{aligned}

Therefore, ( A ) + ( A ) = 0 + e π ( π 1 ) 2 24.779 \Re(A) + \Im(A) = 0 + \dfrac {e^\pi (\pi - 1)}2 \approx \boxed{24.779} .

Zhang Xiaokang
Dec 7, 2019

We will first consider the relation cos θ = e i θ + e i θ 2 \large{\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}} , as to why the sin relation is not used here as a more natural means is attributed to the latter fact that some minus signs will not work out, the cos θ \cos \theta relation works out better

Now upon substitution of θ = i ln ( i x ) \theta = -i\ln (i\sqrt {x}) ,

cos ( i ln ( i x ) ) \cos (-i\ln (i\sqrt {x})) = = e i × i ln ( i x ) + e i × i ln ( i x ) 2 \frac{e^{i \times i\ln (i\sqrt {x})} + e^{-i \times i\ln (i\sqrt {x})}}{2}

e i × i ln ( i x ) + e i × i ln ( i x ) 2 \frac{e^{i \times i\ln (i\sqrt {x})} + e^{-i \times i\ln (i\sqrt {x})}}{2} = = i x + 1 i x 2 \frac{i \sqrt {x} + \frac{1}{i\sqrt {x}}}{2} = = i ( x 1 ) 2 x \frac{i(x-1)}{2\sqrt {x}}

cos ( i ln ( i x ) ) = i ( x 1 ) 2 x \therefore \cos (-i\ln (i\sqrt {x})) = \frac{i(x-1)}{2\sqrt {x}}*

i ln ( i x ) = arccos ( i ( x 1 ) 2 x ) -i\ln (i\sqrt {x}) = \arccos (\frac{i(x-1)}{2\sqrt {x}})

Note: if the sin θ \sin \theta relation were used, the result would have been i ( x + 1 ) 2 x \frac{i(x+1)}{2\sqrt {x}}

Now, arcsin θ = arccos θ + π 2 \arcsin \theta = -\arccos \theta + \frac{\pi}{2}

arcsin i ( x 1 ) 2 x = arccos i ( x 1 ) 2 x + π 2 \therefore \arcsin \frac{i(x-1)}{2\sqrt {x}} = -\arccos \frac{i(x-1)}{2\sqrt {x}}+ \frac{\pi}{2} = = ( i ln ( i x ) ) + π 2 -(-i\ln (i\sqrt {x})) + \frac{\pi}{2} = = i ln ( i x ) + π 2 i\ln (i\sqrt {x}) + \frac{\pi}{2}

Now, i ln ( i x ) + π 2 = i ln ( i ) + π 2 + i ln ( x ) i\ln (i\sqrt {x}) + \frac{\pi}{2} = i\ln (i) + \frac{\pi}{2} + i\ln (\sqrt {x})

Where i ln ( i ) = ln i i = ln ( e π 2 ) = π 2 i\ln (i) = \ln i^{i} = \ln (e^{-\frac{\pi}{2}}) = -\frac{\pi}{2} , the expression simplifies down to just i ln ( x ) i\ln (\sqrt {x})

The question at hand now becomes 0 e π 1 2 i ln ( x ) d x \int_{0}^{e^{\pi}} \frac{1}{2} i \ln (x) dx and by means of contour integration,

0 e π 1 2 i ln ( x ) d x = i 0 e π 1 2 ln ( x ) d x = i [ x ln ( x ) x ] 0 e π = 1 2 i e π ( π 1 ) \int_{0}^{e^{\pi}} \frac{1}{2} i \ln (x) dx = i \int_{0}^{e^{\pi}} \frac{1}{2} \ln (x) dx = i[x\ln (x) - x]_{0}^{e^{\pi}} = \frac{1}{2}ie^{\pi}(\pi - 1)

( A ) + ( A ) = 0 + 1 2 e π ( π 1 ) = 24.77896867 \therefore ℜ(A)+ℑ(A) = 0 + \frac{1}{2}e^{\pi}(\pi - 1) = \boxed {24.77896867}

*As to why cos ( i ln ( i x ) ) = i ( x 1 ) 2 x \cos (i\ln (i\sqrt {x})) = \frac{i(x-1)}{2\sqrt {x}} can't be used instead feels intuitively clear, but i don't have a rigorous justification.

Amal Hari
Dec 7, 2019

First we look at how we arrive at the form arcsin ( i ( x 1 ) 2 x ) \displaystyle\arcsin \left(\frac{i \left(x-1\right)}{2\sqrt{x}}\right) from another form, from which we can equate this to a much simpler representation.

Consider the integral 1 1 + x 2 d x = arctan ( x ) \displaystyle \int \frac{1}{1+x^{2}} dx =\arctan\left(x\right)

1 1 + x 2 = 1 2 ( 1 1 + i x + 1 1 i x ) \displaystyle \frac{1}{1+x^{2}} =\displaystyle \frac{1}{2}\left(\frac{1}{1+ i x} +\frac{1}{1-ix} \right)

1 2 ( 1 1 + i x + 1 1 i x ) d x = arctan x \displaystyle \int \frac{1}{2}\left(\frac{1}{1+ i x} +\frac{1}{1-ix} \right) dx =\arctan x

1 2 i ( ln ( 1 + i x ) ln ( 1 i x ) ) = arctan x \displaystyle \frac{1}{2i}\left( \ln\left(1+ i x\right)-\ln\left(1-ix \right) \right) =\arctan x

1 2 i ( ln ( 1 + i x ) ( 1 i x ) ) = arctan x \displaystyle \frac{1}{2i}\left( \ln\frac{\left(1+ i x\right)}{\left(1-ix \right)} \right) =\arctan x

Let m = ( 1 + i x ) ( 1 i x ) \displaystyle m=\frac{\left(1+ i x\right)}{\left(1-ix \right)} , rearranging we have

x = i × 1 m m + 1 \displaystyle x= i\times \frac{1-m}{m+1}

1 i = 1 × ( i 2 ) i = i \displaystyle \frac{1}{i} =\frac{-1\times \left(i^{2}\right)}{i}=-i

1 2 i ( ln m ) = arctan ( i × 1 m m + 1 ) \displaystyle \frac{1}{2i}\left( \ln m \right) =\arctan \left( i\times \frac{1-m}{m+1}\right)

we know,

arctan ( q ) = arcsin ( q 1 + q 2 ) \arctan\left(q\right) =\arcsin \left(\frac{q}{\sqrt{1+q^{2}}}\right)

Let q = i × 1 m m + 1 q= i\times \frac{1-m}{m+1}

we have arctan ( i × 1 m m + 1 ) = arcsin ( i × 1 m m + 1 1 + ( i × 1 m m + 1 ) 2 ) \displaystyle \arctan \left( i\times \frac{1-m}{m+1}\right)=\displaystyle \arcsin\left(\frac{ i\times \frac{1-m}{m+1}}{\sqrt{1+\left( i\times \frac{1-m}{m+1}\right)^{2}}}\right)

arcsin ( i × 1 m m + 1 1 + ( i × 1 m m + 1 ) 2 ) = arcsin ( i × ( 1 m ) × ( m + 1 ) ( m + 1 ) ( m + 1 ) 2 + ( i 2 × ( 1 m ) 2 ) ) \displaystyle \arcsin\left(\frac{ i\times \frac{1-m}{m+1}}{\sqrt{1+\left( i\times \frac{1-m}{m+1}\right)^{2}}}\right)=\displaystyle \arcsin\left(\frac{ i\times\left( 1-m\right)\times\left(m+1\right)}{\left(m+1\right)\sqrt{\left(m+1\right)^{2}+\left( i^{2}\times \left(1-m\right)^{2}\right)}}\right)

= arcsin ( i × ( 1 m ) ( m + 1 ) 2 ( 1 m ) 2 ) = arcsin ( i × ( 1 m ) m 2 + 2 m + 1 ( m 2 2 m + 1 ) ) = arcsin ( i × ( m 1 ) 2 m ) =\displaystyle \arcsin\left(\frac{ i\times\left( 1-m\right)}{\sqrt{\left(m+1\right)^{2}-\left(1-m\right)^{2}}}\right)=\displaystyle \arcsin\left(\frac{ i\times\left( 1-m\right)}{\sqrt{m^{2} +2m +1-\left(m^{2} -2m +1\right)}}\right) =\displaystyle \arcsin\left(\frac{ i\times\left( m-1\right)}{2\sqrt{m}}\right)

We have

arcsin ( i × ( 1 m ) 2 m ) = arctan ( i × 1 m m + 1 ) = 1 2 i ( ln m ) \displaystyle \arcsin\left(\frac{ i\times\left( 1-m\right)}{2\sqrt{m}}\right) =\arctan \left( i\times \frac{1-m}{m+1}\right)=\displaystyle \frac{1}{2i}\left( \ln m \right)

1 i = 1 × ( i 2 ) i = i \displaystyle \frac{1}{i} =\frac{-1\times \left(i^{2}\right)}{i}=-i

arcsin ( i × ( 1 m ) 2 m ) = i 2 ( ln m ) \displaystyle \arcsin\left(\frac{ i\times\left( 1-m\right)}{2\sqrt{m}}\right) =\displaystyle \frac{-i}{2}\left( \ln m \right)

But we know arcsin ( x ) = arcsin x \arcsin\left(-x\right) =-\arcsin x

So we rearrange again to obtain arcsin ( i × ( m 1 ) 2 m ) = i 2 ( ln m ) -\displaystyle \arcsin\left(\frac{ i\times\left( m-1\right)}{2\sqrt{m}}\right) =\displaystyle \frac{-i}{2}\left( \ln m \right)

arcsin ( i × ( m 1 ) 2 m ) = i 2 ( ln m ) \displaystyle \arcsin\left(\frac{ i\times\left( m-1\right)}{2\sqrt{m}}\right) =\displaystyle \frac{i}{2}\left( \ln m \right)

0 e π arcsin ( i × ( m 1 ) 2 m ) d m = 0 e π i 2 ( ln m ) d m \displaystyle \int_{0}^{e^{\pi}} \arcsin\left(\frac{ i\times\left( m-1\right)}{2\sqrt{m}}\right) dm=\int_{0}^{e^{\pi}} \displaystyle \frac{i}{2}\left( \ln m \right) dm

0 e π i 2 ( ln m ) d m = i × m 2 ( ln m 1 ) 0 e π \int_{0}^{e^{\pi}} \displaystyle \frac{i}{2}\left( \ln m \right) dm =\displaystyle \frac{i\times m}{2}\left( \ln m -1\right)\Biggr|_{0}^{e^{\pi}}

I = i × m 2 ( ln m 1 ) 0 e π = i × e π ( π 1 ) 2 = 0 + 24.7789 i I=\displaystyle \frac{i\times m}{2}\left( \ln m -1\right)\Biggr|_{0}^{e^{\pi}}=\frac{i\times e^{\pi} \left(\pi-1\right)}{2}=0+24.7789i

( I ) = 0 \Re\left(I\right)=0

( I ) = 24.7789 \Im\left(I\right)=24.7789

this can also be derived from hyperbolic sine function

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...