Inverse Trigonometric Function

Geometry Level 3

If arcsin ( 1 x ) arccos ( 1 x ) = 1 \dfrac {\arcsin(1-\sqrt { x } ) }{\arccos(1-\sqrt { x } ) } =1 , then what is arctan ( x 2 3 x + 13 4 ) \arctan \left(\sqrt { { x }^{ 2 }-3x+\dfrac { 13 }{ 4 }}\right) ?

π 2 \frac{\pi }{2} π \pi π 3 \frac{\pi }{3} π 4 \frac{\pi }{4} π 6 \frac{\pi }{6} 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Md Zuhair
Jun 1, 2017

arcsin ( 1 x ) arccos ( 1 x ) = 1 \dfrac {\arcsin(1-\sqrt { x } ) }{\arccos(1-\sqrt { x } ) } =1

Now Cross Multiplying \color{#3D99F6}\text{Now Cross Multiplying}

sin 1 ( 1 x ) = cos 1 ( 1 x ) \implies \sin ^{-1} (1-\sqrt{x}) = \cos^{-1} (1- \sqrt{x})

sin 1 ( 1 x ) = π 2 sin 1 ( 1 x ) \implies \sin ^{-1} (1-\sqrt{x}) = \dfrac{\pi}{2} - \sin ^{-1} (1-\sqrt{x})

2 sin 1 ( 1 x ) = π 2 \implies 2\sin ^{-1} (1-\sqrt{x}) = \dfrac{\pi}{2}

sin 1 ( 1 x ) = π 4 \implies \sin ^{-1} (1-\sqrt{x}) = \dfrac{\pi}{4}

1 x = 1 2 \implies 1- \sqrt{x} = \dfrac{1}{\sqrt{2}}

1 1 2 = x \implies 1 - \dfrac{1}{\sqrt{2}} = \sqrt{x}

2 1 2 = x \implies \dfrac{\sqrt{2}-1}{\sqrt{2}} = \sqrt{x}

x = 3 2 2 2 \implies x = \dfrac{3-2\sqrt{2}}{2}

Now Putting the value of x x in the required expression,

tan 1 x 2 3 x + 13 4 tan 1 9 + 8 12 2 4 ( 9 6 2 2 ) + 13 4 \implies \tan^{-1} \sqrt{x^2 - 3x + \dfrac{13}{4}} \implies \tan^{-1} \sqrt{\dfrac{9+8-12\sqrt{2}}{4} - \bigg(\dfrac{9-6\sqrt{2}}{2} \bigg) + \dfrac{13}{4}}

tan 1 17 12 2 18 + 12 2 4 + 13 4 \implies \tan^{-1} \sqrt{\dfrac{17-12\sqrt{2}-18+12\sqrt{2}}{4} + \dfrac{13}{4}} tan 1 12 4 tan 1 3 π 3 \implies \tan^{-1} \sqrt{\dfrac{12}{4}} \implies \tan^{-1}{\sqrt{3}} \implies \boxed{\dfrac{\pi}{3}} [ OUR PRETTY ANSWER \color{#D61F06} \text{OUR PRETTY ANSWER} ]

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...