Inverse trigonometric function

Calculus Level 2

Calculate sec ( tan 1 x 3 ) . \sec\left(\tan^{-1}\frac{x}{3}\right).

x 2 + 9 x \frac{\sqrt{x^{2}+9}}{x} 3 x 2 + 9 \frac{3}{\sqrt{x^{2}+9}} x x 2 + 9 \frac{x}{\sqrt{x^{2}+9}} x 2 + 9 3 \frac{\sqrt{x^{2}+9}}{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
May 10, 2020

Knowing that t a n 1 ( x 3 ) = s e c 1 ( x 2 + 9 3 ) tan^{-1}( \frac{x}{3}) = sec^{-1}( \frac{\sqrt{x^2 + 9}}{3}) , the result is just x 2 + 9 3 . \boxed{\frac{\sqrt{x^2 + 9}}{3}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...