Inverse Trigonometric Functions-basic

Geometry Level 2

s i n 1 x + s i n 1 ( 1 x ) = c o s 1 x sin^{-1}x+sin^{-1}(1-x)=cos^{-1}x

what could be the possible solutions of this equation? \text{what could be the possible solutions of this equation?}

x = 0 x=0 or x = 1 2 x=\frac{1}{2} x = 1 2 x=\frac{-1}{2} or x = 1 x=1 x = 2 x=-2 or x = 1 x=1 x = 1 x=1 or x = 1 x=-1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mohammad Khaza
Feb 13, 2018

given equation:

s i n 1 x + s i n 1 ( 1 x ) = c o s 1 x sin^{-1}x+sin^{-1}(1-x)=cos^{-1}x

or, 1 x = s i n ( c o s 1 x s i n 1 x ) 1-x=sin(cos^{-1}x-sin^{-1}x)

or, 1 x = s i n ( c o s 1 x ) . c o s ( s i n 1 x ) c o s ( c o s 1 x ) . s i n ( s i n 1 x ) 1-x=sin(cos^{-1}x ). cos(sin^{-1}x) -cos(cos^{-1}x) . sin(sin^{-1}x)

or, 1 x = ( s i n . s i n 1 1 x 2 ) . ( c o s . c o s 1 1 x 2 ) x 2 1-x=(sin .sin^{-1} \sqrt{1-x^2} ).(cos . cos^{-1} \sqrt{1-x^2})-x^2

or, 1 x = 1 x 2 . 1 x 2 x 2 1-x=\sqrt{1-x^2} .\sqrt{1-x^2} -x^2

or, 1 x = 1 x 2 x 2 1-x=1-x^2-x^2

or, 2 x 2 x = 0 2x^2-x=0

or, x ( 2 x 1 ) = 0 x(2x-1)=0

so now,

x = 0 x=0 , or x = 1 2 x=\frac{1}{2}

Because it multiple choice : only the last solution is possibly valid. The others give at least 1 input outside of the domains of the function. Testing last value gives the equation holds for X = 0 and x = 0.5

thanks for uploading a solution.

Mohammad Khaza - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...