inverse trigonometric indefinite integral

Calculus Level 2

arctan ( sinh ( x ) ) arcsin ( tanh ( x ) ) d x = ? \int\frac{\arctan(\sinh(x))}{\arcsin(\tanh(x))}\,dx = ?

arcsinh(x) cos(x)+C x+C arccos(tanhx)+C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Lorenzo Piras
Sep 20, 2018

arcsin t = arctan t 1 t 2 \arcsin t=\arctan \frac t{\sqrt{1-t^2}}

then

arcsin tanh x = arctan tanh x 1 tanh 2 x = arctan sinh x cosh 2 x sinh 2 x = arctan sinh x . \arcsin\tanh x=\arctan\frac{\tanh x}{\sqrt{1-\tanh^2x}}=\arctan\frac{\sinh x}{\sqrt{\cosh^2x-\sinh^2x}}=\arctan\sinh x. so the rusult is just x + C x+C

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...