For a > 1 , we define I ( a ) = ∫ a 1 a x arctan x d x .
Evaluate I ( 3 ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
the most elegant solution
Where did you get this idea from?i mean on what basis?
awesome :D
nice.........
gr8
Rewrite I ( a ) = ∫ 1 / a 1 x arctan x d x + ∫ 1 a x arctan x d x . Set y = 1 / x . Then d y / y = − d x / x and arctan y = π / 2 − arctan x . Putting it all together, we get I ( a ) = ∫ 1 a y π / 2 − arctan y d y + ∫ 1 a x arctan x d x , which simplifies to ∫ 1 a x π / 2 d x = 2 π ln ( a ) . Plugging in 3 gives an approximate answer of 1 . 7 2 6 .
Use the substitution ln x = t ⇒ d x = e t d t .
Hence,
I ( a ) = ∫ − ln a ln a e t arctan ( e t ) e t d t = ∫ − ln a ln a arctan ( e t ) d t ( ∗ )
From the property,
∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x
We have,
I ( a ) = ∫ − ln a ln a arctan ( e − t ) d t = ∫ − ln a ln a arccot ( e t ) d t ( ∗ ∗ )
Add ( ∗ ) and ( ∗ ∗ ) to get:
2 I ( a ) = ∫ − ln a ln a 2 π d t = π ln a ⇒ I ( a ) = 2 π ln a
Hence, I ( 3 ) = 1 . 7 2 5 ⇒ ⌈ I ( 3 ) ⌉ = 2
Shouldn't the property mentioned in line 2 read ∫ a b f ( x ) d x = − ∫ a b f ( a + b − x ) d x ? If we let F ( x ) = ∫ f ( x ) then ∫ a b f ( x ) d x = F ( b ) − F ( a ) = − [ F ( a ) − F ( b ) ] = − [ F ( a + b − b ) − F ( a + b − a ) ] = − ∫ a b f ( a + b − x ) d x
Log in to reply
The property is all right.....I think your second last line is troubling because you see you have defined F ( t ) = ∫ f ( t ) d t ,so substituting t = a + b − x , d t = − d x , F ( a + b − x ) = − ∫ f ( a + b − x ) d x , so the property.
gr8..............
Answer: 2 .
Let use the substitution x = u 1 . Then we'll have d x = − u 2 1 d u and
I ( a ) = ∫ a a 1 u 1 arctan u 1 ⋅ ( − u 2 1 ) d u = ∫ a 1 a u arctan u 1 d u .
Now we can write
2 I ( a ) = ∫ a 1 a x arctan x + arctan x 1 d x = 2 π ∫ a 1 a x d x = π ln a
Finally we obtain I ( a ) = 2 π ln a and ⌈ I ( 3 ) ⌉ = ⌈ 2 π ln 3 ⌉ = 2 .
I am taking a calculus 2 course but, I can't understand the last two steps
nicely done
Why a r c t a n ( x ) + a r c t a n ( 1 / x ) = π / 2 ? Thanks!
By newton's leibnitz rule we have I ′ ( a ) = a tan − 1 a − ( a 2 − 1 ) a 1 tan − 1 a 1 = a 1 ( tan − 1 a + tan − 1 a 1 ) = 2 a π
⇒ I ( a ) = 2 π l n ( a ) + C
Now I ( 1 ) = 0 , ⇒ C = 0 ⇒ I ( a ) = 2 π l n ( a )
Great solution
The solution with C Programming!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
Doesnt give accurate value tho...
Problem Loading...
Note Loading...
Set Loading...
Put t = ln x ⇒ x 1 dx = dt
⇒ I ( a ) = ∫ − ln a ln a tan − 1 ( e t ) dt
= ∫ 0 ln a ( tan − 1 e t + tan − 1 e − t ) dt
= ∫ 0 ln a ( tan − 1 e t + cot − 1 e t ) dt ( e t > 0 )
= ∫ 0 ln a 2 π dt = 2 π ln a