Inverse trigonometric integral

Calculus Level 4

For a > 1 a>1 , we define I ( a ) = 1 a a arctan x x d x . I(a)=\int^a_\frac{1}{a}\frac{\arctan x}{x}\,dx.

Evaluate I ( 3 ) I(3) .


The answer is 1.72569.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Jatin Yadav
Dec 16, 2013

Put t = ln x t = \ln x 1 x dx = dt \Rightarrow \frac{1}{x} \text{dx} = \text{dt}

I ( a ) = ln a ln a tan 1 ( e t ) dt \Rightarrow I(a) = \displaystyle \int_{- \ln a}^{\ln a}\tan^{-1} (e^t) \text{dt}

= 0 ln a ( tan 1 e t + tan 1 e t ) dt \displaystyle \int_{0}^{\ln a} (\tan^{-1} e^t + \tan^{-1} e^{-t}) \text{dt}

= 0 ln a ( tan 1 e t + cot 1 e t ) dt \displaystyle \int_{0}^{\ln a} (\tan^{-1} e^t + \cot^{-1} e^{t}) \text{dt} ( e t > 0 e^t > 0 )

= 0 ln a π 2 dt \displaystyle \int_{0}^{\ln a} \frac{\pi}{2} \text{dt} = π 2 ln a \boxed{\frac{\pi}{2} \ln a}

the most elegant solution

kirtan bhatt - 7 years, 5 months ago

Where did you get this idea from?i mean on what basis?

Devgeet Patel - 7 years, 5 months ago

awesome :D

Christian Baldo - 7 years, 5 months ago

nice.........

Shubham Jain - 7 years, 4 months ago

gr8

sanidhya mohovia - 7 years, 3 months ago
Patrick Corn
Dec 15, 2013

Rewrite I ( a ) = 1 / a 1 arctan x x d x + 1 a arctan x x d x I(a) = \int_{1/a}^1 \frac{\arctan x}{x} \, dx + \int_1^a \frac{\arctan x}{x} \, dx . Set y = 1 / x y = 1/x . Then d y / y = d x / x dy/y = -dx/x and arctan y = π / 2 arctan x \arctan y = \pi/2 - \arctan x . Putting it all together, we get I ( a ) = 1 a π / 2 arctan y y d y + 1 a arctan x x d x , I(a) = \int_1^a \frac{\pi/2-\arctan y}{y} \, dy + \int_1^a \frac{\arctan x}{x} \, dx, which simplifies to 1 a π / 2 x d x = π 2 ln ( a ) \int_1^a \frac{\pi/2}{x} \, dx = \frac{\pi}2 \ln(a) . Plugging in 3 3 gives an approximate answer of 1.726 \fbox{1.726} .

Pranav Arora
Dec 15, 2013

Use the substitution ln x = t d x = e t d t \ln x=t \Rightarrow dx=e^t\,dt .

Hence,

I ( a ) = ln a ln a arctan ( e t ) e t e t d t = ln a ln a arctan ( e t ) d t ( ) \displaystyle I(a)=\int_{-\ln a}^{\ln a} \frac{\arctan(e^t)}{e^t}e^t\,dt=\int_{-\ln a}^{\ln a} \arctan(e^t)\,dt \,\, (*)

From the property,

a b f ( x ) d x = a b f ( a + b x ) d x \displaystyle \int_a^b f(x)\,dx=\int_a^b f(a+b-x)\,dx

We have,

I ( a ) = ln a ln a arctan ( e t ) d t = ln a ln a arccot ( e t ) d t ( ) \displaystyle I(a)=\int_{-\ln a}^{\ln a} \arctan(e^{-t})\,dt=\int_{-\ln a}^{\ln a} \text{arccot}(e^t)\,dt \,\,\, (**)

Add ( ) (*) and ( ) (**) to get:

2 I ( a ) = ln a ln a π 2 d t = π ln a I ( a ) = π ln a 2 \displaystyle 2I(a)=\int_{-\ln a}^{\ln a} \frac{\pi}{2}\,dt=\pi\ln a \Rightarrow \boxed {I(a)=\dfrac{\pi \ln a}{2}}

Hence, I ( 3 ) = 1.725 I ( 3 ) = 2 I(3)=1.725 \Rightarrow \boxed{\lceil{I(3)\rceil}=2}

Shouldn't the property mentioned in line 2 read a b f ( x ) d x = a b f ( a + b x ) d x \int_a^b f(x)dx = -\int_a^b f(a+b-x) dx ? If we let F ( x ) = f ( x ) F(x) = \int f(x) then a b f ( x ) d x = F ( b ) F ( a ) = [ F ( a ) F ( b ) ] = [ F ( a + b b ) F ( a + b a ) ] \int_a^b f(x) dx= F(b) - F(a) = -[ F(a) - F(b) ] = -[ F(a+b-b) - F(a+b-a)] = a b f ( a + b x ) d x = -\int_a^b f(a+b-x) dx

Carl Denton - 7 years, 5 months ago

Log in to reply

The property is all right.....I think your second last line is troubling because you see you have defined F ( t ) = f ( t ) d t F(t)=\int f(t) dt ,so substituting t = a + b x , d t = d x , F ( a + b x ) = f ( a + b x ) d x t=a+b-x, dt=-dx , F(a+b-x)= -\int f(a+b-x)dx , so the property.

Kulkul Chatterjee - 7 years, 5 months ago

Log in to reply

Ah. I see my mistake. Thank you!

Carl Denton - 7 years, 5 months ago

gr8..............

Harshita Jain - 7 years, 3 months ago
Nicolae Sapoval
Dec 15, 2013

Answer: 2 \boxed{2} .

Let use the substitution x = 1 u x=\frac{1}{u} . Then we'll have d x = 1 u 2 d u dx=-\frac{1}{u^2}\,du and

I ( a ) = a 1 a arctan 1 u 1 u ( 1 u 2 ) d u = 1 a a arctan 1 u u d u . I(a)=\int^{\frac{1}{a}}_{a}\frac{\arctan{\frac{1}{u}}}{\frac{1}{u}}\cdot\left(-\frac{1}{u^2}\right)\,du=\int^{a}_{\frac{1}{a}}\frac{\arctan{\frac{1}{u}}}{u}\,du.

Now we can write

2 I ( a ) = 1 a a arctan x + arctan 1 x x d x = π 2 1 a a d x x = π ln a 2I(a)=\int^{a}_{\frac{1}{a}}\frac{\arctan x+\arctan\frac{1}{x}}{x}\,dx=\frac{\pi}{2}\int^{a}_{\frac{1}{a}}\frac{dx}{x}=\pi\ln a

Finally we obtain I ( a ) = π ln a 2 I(a)=\dfrac{\pi \ln a}{2} and I ( 3 ) = π ln 3 2 = 2 \lceil I(3)\rceil=\lceil \dfrac{\pi \ln 3}{2}\rceil=\boxed{2} .

I am taking a calculus 2 course but, I can't understand the last two steps

Abduallah Farid - 7 years, 5 months ago

nicely done

Kishore Saldanha - 7 years, 5 months ago

Why a r c t a n ( x ) + a r c t a n ( 1 / x ) = π / 2 arctan(x) + arctan(1/x)= \pi/2 ? Thanks!

Carlos David Nexans - 6 years, 10 months ago
Ronak Agarwal
Jul 25, 2014

By newton's leibnitz rule we have I ( a ) = tan 1 a a ( 1 a 2 ) tan 1 1 a 1 a = 1 a ( tan 1 a + tan 1 1 a ) = π 2 a { I }^{ ' }(a)=\frac { \tan ^{ -1 }{ a } }{ a } -(\frac { -1 }{ { a }^{ 2 } } )\frac { \tan ^{ -1 }{ \frac { 1 }{ a } } }{ \frac { 1 }{ a } } \\ =\frac { 1 }{ a } (\tan ^{ -1 }{ a } +\tan ^{ -1 }{ \frac { 1 }{ a } } )=\frac { \pi }{ 2a }

I ( a ) = π 2 l n ( a ) + C \Rightarrow I(a)=\frac { \pi }{ 2 } ln(a)+C

Now I ( 1 ) = 0 , C = 0 I ( a ) = π 2 l n ( a ) I(1)=0,\Rightarrow C=0\\ \Rightarrow I(a)=\frac { \pi }{ 2 } ln(a)

Great solution

Carlos David Nexans - 6 years, 10 months ago

The solution with C Programming!

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
#include <stdio.h>
#include <math.h>
#include <string.h>
#define pi acos(-1)
int main()
{

double s=0,x=0.333333333,dx=pow(10,-2),a,b;
while(x<=3)

{
s+=(atan(x)*dx)/x;  
x+=dx;
}
printf("%lf",s);
printf("\n\n");

return 0;
}

Doesnt give accurate value tho...

Md Zuhair - 2 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...