arccot ( 1 2 + 4 3 ) + arccot ( 2 2 + 4 3 ) + arccot ( 3 2 + 4 3 ) + arccot ( 4 2 + 4 3 ) + ⋯ = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
cot − 1 ( 1 2 + 4 3 ) + cot − 1 ( 2 2 + 4 3 ) + cot − 1 ( 3 2 + 4 3 ) + cot − 1 ( 4 2 + 4 3 ) + … = n → ∞ lim k = 1 ∑ n cot − 1 ( 4 4 k 2 + 3 ) = n → ∞ lim k = 1 ∑ n tan − 1 ( 4 k 2 + 3 4 ) = n → ∞ lim tan − 1 ( 5 + 2 n 4 n ) = n → ∞ lim tan − 1 ( n 5 + 2 4 ) = tan − 1 ( 0 + 2 4 ) = tan − 1 2
The proof for both highlighted expressions are found below
Proof 1:
cot − 1 a = tan − 1 ( a 1 )
Let cot − 1 a = b
a = cot b a = tan b 1 tan b = a 1 b = tan − 1 ( a 1 ) cot − 1 a = tan − 1 ( a 1 )
Proof 2:
k = 1 ∑ n tan − 1 ( 4 k 2 + 3 4 ) = tan − 1 ( 5 + 2 n 4 n )
First of all, we need to show that:
tan − 1 a + tan − 1 b = tan − 1 ( 1 − a b a + b )
Let tan − 1 a = x , tan − 1 b = y
tan − 1 a + tan − 1 b = x + y tan ( x + y ) = tan ( tan − 1 a + tan − 1 b ) tan ( x + y ) = 1 − tan ( tan − 1 a ) tan ( tan − 1 b ) tan ( tan − 1 a ) + tan ( tan − 1 b ) tan ( x + y ) = 1 − a b a + b x + y = tan − 1 ( 1 − a b a + b ) tan − 1 a + tan − 1 b = tan − 1 ( 1 − a b a + b )
To see this pattern, let us try to get the sum for n = 1 , 2 , 3 , 4
n = 1 ⟹ k = 1 ∑ 1 tan − 1 ( 4 k 2 + 3 4 ) = tan − 1 ( 7 4 ) n = 2 ⟹ k = 1 ∑ 2 tan − 1 ( 4 k 2 + 3 4 ) = tan − 1 ( 7 4 ) + tan − 1 ( 1 9 4 ) = tan − 1 ( 1 − 7 4 × 1 9 4 7 4 + 1 9 4 ) = tan − 1 ( 9 8 ) n = 3 ⟹ k = 1 ∑ 3 tan − 1 ( 4 k 2 + 3 4 ) = tan − 1 ( 7 4 ) + tan − 1 ( 1 9 4 ) + tan − 1 ( 3 9 4 ) = tan − 1 ( 9 8 ) + tan − 1 ( 3 9 4 ) = tan − 1 ( 1 − 9 8 × 3 9 4 9 8 + 3 9 4 ) = tan − 1 ( 1 1 1 2 ) n = 4 ⟹ k = 1 ∑ 4 tan − 1 ( 4 k 2 + 3 4 ) = tan − 1 ( 7 4 ) + tan − 1 ( 1 9 4 ) + tan − 1 ( 3 9 4 ) + tan − 1 ( 6 7 4 ) = tan − 1 ( 1 1 1 2 ) + tan − 1 ( 6 7 4 ) = tan − 1 ( 1 − 1 1 1 2 × 6 7 4 1 1 1 2 + 6 7 4 ) = tan − 1 ( 1 3 1 6 )
Notice that for the first 4 values of n , the sum gives you tan − 1 ( 5 + 2 n 4 n )
This relationship can be further proved with induction.
Proof by induction
Let P n be the proposition that k = 1 ∑ n tan − 1 ( 4 k 2 + 3 4 ) = tan − 1 ( 5 + 2 n 4 n ) for all positive integers n .
Base case: Let n = 1
LHS = tan − 1 ( 4 ( 1 ) 2 + 3 4 ) = tan − 1 ( 7 4 )
RHS = tan − 1 ( 5 + 2 ( 1 ) 4 ( 1 ) ) = tan − 1 ( 7 4 )
LHS = RHS. Base case holds true.
Induction Hypothesis: Suppose P m is true for some integer m . Consider P m + 1
LHS P m + 1
= tan − 1 ( 5 + 2 m 4 m ) + tan − 1 ( 4 ( m + 1 ) 2 + 3 4 ) = tan − 1 ( 1 − ( 5 + 2 m 4 m ) ( 4 m 2 + 8 m + 7 4 ) 5 + 2 m 4 m + 4 m 2 + 8 m + 7 4 ) = tan − 1 ⎝ ⎛ ( ( 5 + 2 m ) ( 4 m 2 + 8 m + 7 ) ( 5 + 2 m ) ( 4 m 2 + 8 m + 7 ) − 1 6 m ) ( ( 5 + 2 m ) ( 4 m 2 + 8 m + 7 ) 4 m ( 4 m 2 + 8 m + 7 ) + 4 ( 5 + 2 m ) ) ⎠ ⎞ = tan − 1 ( 8 m 3 + 3 6 m 2 + 3 8 m + 3 5 1 6 m 3 + 3 2 m 2 + 3 6 m + 2 0 ) = tan − 1 ( 8 m 3 + 2 8 m 2 + 8 m 2 + 2 8 m + 1 0 m + 3 5 4 ( 4 m 3 + 8 m 2 + 9 m + 5 ) ) = tan − 1 ( 4 m 2 ( 2 m + 7 ) + 4 m ( 2 m + 7 ) + 5 ( 2 m + 7 ) 4 ( 4 m 3 + 4 m 2 + 4 m 2 + 4 m + 5 m + 5 ) ) = tan − 1 ( ( 2 m + 7 ) ( 4 m 2 + 4 m + 5 ) 4 ( 4 m 2 ( m + 1 ) + 4 m ( m + 1 ) + 5 ( m + 1 ) ) ) = tan − 1 ( ( 5 + 2 m + 2 ) ( 4 m 2 + 4 m + 5 ) 4 ( m + 1 ) ( 4 m 2 + 4 m + 5 ) ) = tan − 1 ( 5 + 2 ( m + 1 ) 4 ( m + 1 ) )
= RHS P m + 1
Conclusion: By Mathematical Induction, since P 1 is true and P m is true implies P m + 1 is true, thus P n is true for all positive integers n
Phew! That was a long proof
Very nice solution.(+1) How do u align the text at center?
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Sum and Difference Trigonometric Formulas - Problem Solving
T = = = = = r = 1 ∑ n cot − 1 ( r 2 + 4 3 ) r = 1 ∑ n tan − 1 ⎝ ⎜ ⎛ r 2 + 4 3 1 ⎠ ⎟ ⎞ r = 1 ∑ n tan − 1 ⎝ ⎜ ⎜ ⎛ 1 + ( r 2 − 4 1 ) 1 ⎠ ⎟ ⎟ ⎞ r = 1 ∑ n tan − 1 ( 1 + ( r + 2 1 ) ( r − 2 1 ) ( r + 2 1 ) − ( r − 2 1 ) ) r = 1 ∑ n [ tan − 1 ( r + 2 1 ) − tan − 1 ( r − 2 1 ) ]
( A T e l e s c o p i c S e r i e s )
= tan − 1 ( n + 2 1 ) − tan − 1 2 1
∴ n → ∞ lim T = 2 π − tan − 1 2 1 = tan − 1 2