∫ 0 1 7 2 9 ⌊ tan − 1 x ⌋ d x = a
Find the value of ⌊ a ⌋ as given above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice Solution @Megh Choksi !
After solving this I created an short question ! Based on @Sandeep Bhardwaj's Favourite Number 1729 :) Also Try this .
∫ 0 1 7 2 9 ⌊ t a n − 1 ( tan x ) ⌋ . d x = a .
Find ⌊ a ⌋ .
Log in to reply
I'm getting a = − 7 8 5 . 0 5 9 4 5 . . . , making ⌊ a ⌋ = − 7 8 6 .
Apparently WoframAlpha can't handle this one. :)
Nice solution !
Upvoted!!!!!
0 ∫ 1 7 2 9 ⌊ tan − 1 x ⌋ d x = 0 ∫ tan 1 ⌊ tan − 1 x ⌋ d x + tan 1 ∫ 1 7 2 9 ⌊ tan − 1 x ⌋ d x = 0 ∫ tan 1 0 d x + tan 1 ∫ 1 7 2 9 1 d x = 1 7 2 9 − tan 1 ≈ 1 7 2 7 . 4 4 2 5 9 2 0 ∫ 1 7 2 9 ⌊ tan − 1 x ⌋ d x = 1 7 2 9 − tan 1 c
Good observation about the value of tan − 1 θ .
∫ 0 1 7 2 9 ⌊ tan − 1 x ⌋ d x = ∫ 0 1 ⌊ tan − 1 x ⌋ d x + ∫ 1 2 ⌊ tan − 1 x ⌋ d x + ∫ 2 3 ⌊ tan − 1 x ⌋ d x + ∫ 3 4 ⌊ tan − 1 x ⌋ d x + … + ∫ 1 7 2 7 1 7 2 8 ⌊ tan − 1 x ⌋ d x + ∫ 1 7 2 8 1 7 2 9 ⌊ tan − 1 x ⌋ d x
= ∫ 0 1 0 d x + ∫ 1 2 0 d x + ∫ 2 3 1 d x + ∫ 3 4 1 d x + … + ∫ 1 9 2 7 1 7 2 8 1 d x + ∫ 1 7 2 8 1 7 2 9 1 d x = ∫ 2 1 7 2 9 1 d x = 1 7 2 9 − 2 = 1 7 2 7
let x=tan (t) I=Integrate([t]sec^2(t)dt) from (0 to (tan^-1(1729)~1.57)) I=Integrate([t]sec^2(t)dt) from (0 to 1)) +Integrate([t]sec^2(t)dt) from (1 to 1.57)) the first part will vanish as [t]=0 in (0,1). and the second one = Integrate(sec^2(t)dt) from (1 to tan^-1(1729)))=1729- tan(1radians)=1727.(some fraction) thus [a]=1727
You have a thing with the 1729 number!
Problem Loading...
Note Loading...
Set Loading...
= ∫ 0 t a n 1 0 + ∫ t a n 1 1 7 2 9 1
= 1 7 2 9 − t a n 1