Inverse with floor

Calculus Level 4

0 1729 tan 1 x d x = a \large \int_{0}^{1729} \lfloor \tan^{-1}x \rfloor dx=a

Find the value of a \lfloor a \rfloor as given above.


The answer is 1727.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

U Z
Nov 19, 2014

= 0 t a n 1 0 + t a n 1 1729 1 = \displaystyle \int_{0}^{tan1} 0 + \displaystyle \int_{tan1}^{1729} 1

= 1729 t a n 1 = 1729 - tan1

Nice Solution @Megh Choksi !

After solving this I created an short question ! Based on @Sandeep Bhardwaj's Favourite Number 1729 :) Also Try this .

0 1729 t a n 1 ( tan x ) . d x = a \int _{ 0 }^{ 1729 } \lfloor tan^{ -1 }(\tan { x } )\rfloor .dx=a .

Find a \left\lfloor a \right\rfloor .

Deepanshu Gupta - 6 years, 6 months ago

Log in to reply

I'm getting a = 785.05945... a = -785.05945... , making a = 786 \lfloor a \rfloor = -786 .

Apparently WoframAlpha can't handle this one. :)

Brian Charlesworth - 6 years, 6 months ago

Nice solution !

Sandeep Bhardwaj - 6 years, 6 months ago

Log in to reply

Was struggling with degrees!! :(

Pranjal Jain - 6 years, 6 months ago

Upvoted!!!!!

Ayush Verma - 6 years, 6 months ago
Kishore S. Shenoy
Oct 27, 2015

0 1729 tan 1 x d x = 0 tan 1 tan 1 x d x + tan 1 1729 tan 1 x d x = 0 tan 1 0 d x + tan 1 1729 1 d x = 1729 tan 1 1727.442592 0 1729 tan 1 x d x = 1729 tan 1 c \begin{aligned}\displaystyle \int\limits_0^{1729} \left \lfloor \tan^{-1} x\right \rfloor \mathrm{d}x&=\int\limits_0^{\tan 1} \left \lfloor \tan^{-1} x\right \rfloor \mathrm{d}x + \int\limits_{\tan 1}^{1729} \left \lfloor \tan^{-1} x\right \rfloor \mathrm{d}x \\&=\int\limits_0^{\tan 1} 0 \mathrm{d}x + \int\limits_{\tan 1}^{1729} 1 \mathrm{d}x\\ &= 1729- \tan 1\\&\approx 1727.442592\end{aligned}\\\huge \boxed{\displaystyle\int\limits_0^{1729} \left \lfloor \tan^{-1} x\right \rfloor \mathrm{d}x = 1729 - \tan 1^c}

Moderator note:

Good observation about the value of tan 1 θ \tan^{-1} \theta .

Mas Mus
Mar 30, 2015

0 1729 tan 1 x d x = 0 1 tan 1 x d x + 1 2 tan 1 x d x + 2 3 tan 1 x d x + 3 4 tan 1 x d x + + 1727 1728 tan 1 x d x + 1728 1729 tan 1 x d x \displaystyle \int_{0}^{1729} \lfloor\tan^{-1}x\rfloor \mathrm{d}x=\int_{0}^{1} \lfloor\tan^{-1}x\rfloor \mathrm{d}x+\int_{1}^{2} \lfloor\tan^{-1}x\rfloor \mathrm{d}x +\int_{2}^{3} \lfloor\tan^{-1}x\rfloor \mathrm{d}x\\+\displaystyle\int_{3}^{4} \lfloor\tan^{-1}x\rfloor \mathrm{d}x+\ldots+\int_{1727}^{1728} \lfloor\tan^{-1}x\rfloor \mathrm{d}x+\int_{1728}^{1729} \lfloor\tan^{-1}x\rfloor \mathrm{d}x

= 0 1 0 d x + 1 2 0 d x + 2 3 1 d x + 3 4 1 d x + + 1927 1728 1 d x + 1728 1729 1 d x = 2 1729 1 d x = 1729 2 = 1727 \begin{aligned}\displaystyle&=\int_{0}^{1} 0 \mathrm{d}x+\int_{1}^{2} 0 \mathrm{d}x+\int_{2}^{3} 1 \mathrm{d}x+\int_{3}^{4} 1 \mathrm{d}x+\ldots+\int_{1927}^{1728} 1 \mathrm{d}x+\int_{1728}^{1729} 1 \mathrm{d}x\\ &=\displaystyle \int_{2}^{1729} 1 \mathrm{d}x=1729-2=\large\boxed{1727}\end{aligned}

Priyesh Pandey
Feb 14, 2015

let x=tan (t) I=Integrate([t]sec^2(t)dt) from (0 to (tan^-1(1729)~1.57)) I=Integrate([t]sec^2(t)dt) from (0 to 1)) +Integrate([t]sec^2(t)dt) from (1 to 1.57)) the first part will vanish as [t]=0 in (0,1). and the second one = Integrate(sec^2(t)dt) from (1 to tan^-1(1729)))=1729- tan(1radians)=1727.(some fraction) thus [a]=1727

Humberto Bento
Nov 21, 2014

You have a thing with the 1729 number!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...