Inverse+Integration

Calculus Level 4

0 3 1 1 + x 2 sin 1 ( 2 x 1 + x 2 ) d x = a π b c \large \int _{ 0 }^{ \sqrt { 3 } }{ \frac { 1 }{ { 1 }+{ x }^{ 2 } } } \sin ^{ -1 }{ \left( \frac { { 2 }{ x } }{ { 1 }+{ x }^{ 2 } } \right) } { dx } = \frac {a\pi^b}c

If the equation above holds true for positive integers a a , b b and c c , with coprime integers a a and c c . Find a + b + c a+b+c .


The answer is 81.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Vivek Pamnani
Mar 19, 2018

Substitue x = tan θ x = \tan \theta

d x = sec 2 θ d θ dx = \sec^2\theta d\theta

This gives,

0 π 3 1 1 + t a n 2 θ sin 1 ( 2 tan θ 1 + tan 2 θ ) × sec 2 θ d θ \large \int_0^\frac{\pi}{3} \frac{1}{1+tan^2\theta}\sin^{-1}\bigl(\frac{2\tan\theta}{1+\tan^2\theta}\bigr)\times \sec^2\theta d\theta

= 0 π 3 sin 1 ( sin 2 θ ) d θ \large = \int_0^\frac{\pi}{3} \sin^{-1}(\sin 2\theta) d\theta

Now for 0 2 θ π 2 ; sin 1 ( sin 2 θ ) = 2 θ 0 \leq 2\theta \leq \frac{\pi}{2}; \sin^{-1}(\sin2\theta) = 2\theta

And for π 2 2 θ 2 π 3 ; sin 1 ( sin 2 θ ) = π 2 θ \frac{\pi}{2} \leq 2\theta \leq \frac{2\pi}{3}; \sin^{-1}(\sin2\theta) = \pi - 2\theta

This gives,

= 0 π 4 2 θ d θ + π 4 π 3 ( π 2 θ ) d θ \large = \int_0^\frac{\pi}{4} 2\theta d\theta\ + \int_\frac{\pi}{4}^\frac{\pi}{3} (\pi - 2\theta) d\theta

= 7 π 2 72 \large = \frac{7\pi^2}{72}

Hence, a + b + c = 7 + 2 + 72 = 81 a+b+c = 7+2+72 = 81

Chew-Seong Cheong
Mar 19, 2018

I = 0 3 1 1 + x 2 sin 1 ( 2 x 1 + x 2 ) d x Let x = tan θ 2 d x = 1 2 sec 2 θ 2 d θ = 0 2 π 3 1 1 + tan 2 θ 2 sin 1 ( 2 tan θ 2 1 + tan 2 θ 2 ) 1 2 sec 2 θ 2 d θ = 1 2 0 2 π 3 1 sec 2 θ 2 sin 1 ( sin θ ) sec 2 θ 2 d θ = 1 2 0 2 π 3 sin 1 ( sin θ ) d θ Note that π 2 sin 1 x π 2 = 1 2 ( 0 π 2 sin 1 ( sin θ ) d θ + π 2 2 π 3 sin 1 ( sin ( π θ ) ) d θ ) = 1 2 ( 0 π 2 θ d θ + π 2 2 π 3 ( π θ ) d θ ) = θ 2 4 0 π 2 + π θ 2 π 2 2 π 3 θ 2 4 π 2 2 π 3 = π 2 16 + π 2 3 π 2 4 π 2 9 + π 2 16 = 7 π 2 72 \begin{aligned} I & = \int_0^{\sqrt 3} \frac 1{1+x^2} \sin^{-1}\left(\frac {2x}{1+x^2}\right) dx & \small \color{#3D99F6} \text{Let }x = \tan \frac \theta 2 \implies dx = \frac 12 \sec^2 \frac \theta 2\ d\theta \\ & = \int_0^{\frac {2\pi}3} \frac 1{1 + \tan^2 \frac \theta 2} \sin^{-1} \left(\frac {2\tan \frac \theta 2}{1+\tan^2 \frac \theta 2}\right) \cdot \frac 12 \sec^2 \frac \theta 2\ d\theta \\ & = \frac 12 \int_0^{\frac {2\pi}3} \frac 1{\sec^2 \frac \theta 2} \sin^{-1} \left(\sin \theta \right) \cdot \sec^2 \frac \theta 2\ d\theta \\ & = \frac 12 \int_0^{\frac {2\pi}3} \sin^{-1} (\sin \theta) \ d\theta & \small \color{#3D99F6} \text{Note that } - \frac \pi 2 \le \sin^{-1} x \le \frac \pi 2 \\ & = \frac 12 \left(\int_0^\frac \pi 2 \sin^{-1} (\sin \theta) \ d\theta + \int_\frac \pi 2^{\frac {2\pi}3} \sin^{-1} (\sin (\pi - \theta)) \ d\theta\right) \\ & = \frac 12 \left(\int_0^\frac \pi 2 \theta \ d\theta + \int_\frac \pi 2^{\frac {2\pi}3} (\pi - \theta) \ d\theta\right) \\ & = \frac {\theta^2}4 \ \bigg|_0^\frac \pi 2 + \frac {\pi \theta}2 \ \bigg|_\frac \pi 2^{\frac {2\pi}3} - \frac {\theta^2}4 \ \bigg|_\frac \pi 2^{\frac {2\pi}3} \\ & = \frac {\pi^2}{16} + \frac {\pi^2}3 - \frac {\pi^2}4 - \frac {\pi^2}9 + \frac {\pi^2}{16} \\ & = \frac {7\pi^2}{72} \end{aligned}

Therefore, a + b + c = 7 + 2 + 72 = 81 a+b+c = 7+2+72 = \boxed{81} .

@Ayush Mishra , I redo the phrasing and LaTex of the problem for you.

Chew-Seong Cheong - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...