Inversing the cotangent

Geometry Level 3

10 cot [ cot 1 ( 3 ) + cot 1 ( 7 ) + cot 1 ( 13 ) + cot 1 ( 21 ) ] = ? \large 10\cot \bigg [\cot^{-1}(3)+\cot^{-1}(7)+\cot^{-1}(13)+\cot^{-1}(21) \bigg] = \ ?


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Moderator note:

Right. For the sake of variety, can you think of another approach?

Garrett Clarke
Jul 5, 2015

First, consider the following. For complex numbers z 1 , z 2 , , z n z_1, z_2,\dots,z_n :

a r g ( z 1 z 2 z n ) = a r g ( z 1 ) + a r g ( z 2 ) + + a r g ( z n ) arg(z_1z_2\dots z_n) = arg(z_1)+arg(z_2)+\dots+arg(z_n)

Where z = a + b i z=a+bi , a r g ( z ) = c o t 1 ( a b ) arg(z) = cot^{-1}(\frac{a}{b})

Therefore we have the following formula:

cot ( k = 1 n c o t 1 ( z k ) ) = R e [ p ] I m [ p ] \cot\bigg(\displaystyle\sum_{k=1}^n cot^{-1}(z_k)\bigg)=\frac{Re[p]}{Im[p]} where p = z 1 z 2 z n p=z_1z_2\dots z_n

In this case, p = ( 3 + i ) ( 7 + i ) ( 13 + i ) ( 21 + i ) = 5100 + 3400 i p=(3+i)(7+i)(13+i)(21+i)=5100+3400i

R e [ p ] = 5100 Re[p]=5100 , I m [ p ] = 3400 Im[p]=3400 , and R e [ p ] I m [ p ] = 3 2 \frac{Re[p]}{Im[p]}=\frac{3}{2} .

Plugging this into our problem, our answer becomes 10 ( 3 2 ) = 15 10\bigg(\frac{3}{2}\bigg)=\boxed{15}

Raunak Goswami
Apr 26, 2015

cot^(-1)(x)+cot^(-1)(y)=cot^(-1)[(xy-1)/x+y] Using the above formula we get cot^(-1)(3)+cot^(-1)(7)=cot^(-1)(2) and cot^(-1)(13)+cot^(-1)(21)=cot^(-1)(8) Again cot^(-1)(2)+cot^(-1)(8)=cot^(-1)(3/2). Now 10cot[cot^(-1)(3/2)]=10*3/2=15(Answer)

Daniel Yang
Oct 3, 2015

Stop being unoriginal and copying AIME problems! Seriously, its really annoying!

10 c o t [ c o t 1 ( 3 ) + c o t 1 ( 7 ) + c o t 1 ( 13 ) + c o t 1 ( 21 ) ] 10 cot [ cot^{-1}(3) + cot^{-1}(7) + cot^{-1}(13) + cot^{-1}(21) ] 10 c o t [ t a n 1 1 3 + t a n 1 1 7 + t a n 1 1 13 + t a n 1 1 21 ] 10 cot [ tan^{-1}{\frac13} + tan^{-1}{\frac17} + tan^{-1}{\frac1{13}} + tan^{-1}{\frac1{21}} ] 10 c o t [ t a n 1 1 2 + t a n 1 1 8 ] 10 cot [ tan^{-1}{\frac12} + tan^{-1}{\frac18}] 10 c o t [ t a n 1 10 15 ] = 10 c o t [ c o t 1 15 10 ] 10 cot [ tan^{-1}{\frac{10}{15} ] = 10 cot [ cot^{-1}{\frac{15}{10}}} ] 15 15

Formulas used above :

t a n 1 x + t a n 1 y = t a n 1 x + y 1 x y tan^{-1} x + tan^{-1} y = tan^{-1} \frac{x+y}{1-xy}

c o t 1 x = t a n 1 1 x cot^{-1} x = tan^{-1} \frac 1x and vice-versa

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...