A function f is defined as f ( x ) = sin x + 2 x .
Evaluate ∫ 2 + sin ( 1 ) 4 + sin ( 2 ) f − 1 ( x ) d x correct to 3 decimal places.
Clarifications: f − 1 ( x ) denotes the inverse of f ( x ) , i.e. if y = f ( x ) , then x = f − 1 ( y ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Lol nice :D
May be that's way the first step is called 'change of dummy variable' :P
Relevant wiki: Integration Tricks
I = ∫ 2 + sin 1 4 + sin 2 f − 1 ( x ) d x = ∫ f ( 1 ) f ( 2 ) f − 1 ( x ) d x = 2 f ( 2 ) − 1 f ( 1 ) − ∫ 1 2 f ( x ) d x = 2 ( 4 + sin 2 ) − ( 2 + sin 1 ) − ∫ 1 2 sin x + 2 x d x = 6 + 2 sin 2 − sin 1 − [ x 2 − cos x ∣ ∣ ∣ ∣ 1 2 ] = 3 + 2 sin 2 − sin 1 + cos 2 − cos 1 ≈ 3 . 0 2 1 Use the identity ∫ a b f ( x ) d x + ∫ f ( a ) f ( b ) f − 1 ( x ) d x = b f ( b ) − a f ( a ) for increasing one-to-one functions
I credit the solution writing grandmaster @Chew-Seong Cheong for my solution format; I'm slowly learning how to write better solutions :)
From inspection, we have f ( 1 ) = 2 + sin 1 and f ( 2 ) = 4 + sin 2 .
NOTE: We don't need a graphing calculator for solving this question. We can solve this question by just graphing it on a paper. I've used Desmos Graphing Calculator so that a better view of the graph can be provided.
Let y = f ( x ) , then x = f − 1 ( y ) . We represent this on the x-y plane like this :
Thereby, we can conclude that ∫ 2 + sin ( 1 ) 4 + sin ( 2 ) f − 1 ( y ) d y (which is the same as ∫ 2 + sin ( 1 ) 4 + sin ( 2 ) f − 1 ( x ) d x ) is the area of the region C D F E . Furthermore, O B F E and O A D C are rectangles and the area of the region A D F B is simply the integral ∫ 1 2 sin ( x ) + 2 x d x .
We also have a r ( O A D C ) + a r ( A D F B ) + a r ( C D F E ) = a r ( O B F E )
⟹ 1 ( 2 + sin 1 ) + ( ∫ 1 2 sin ( x ) + 2 x d x ) + ( ∫ 2 + sin ( 1 ) 4 + sin ( 2 ) f − 1 ( x ) d x ) = 2 ( 4 + sin 2 )
⟹ 2 + sin 1 + cos 1 − cos 2 + 3 + ( ∫ 2 + sin ( 1 ) 4 + sin ( 2 ) f − 1 ( x ) d x ) = 8 + 2 sin 2
⟹ ∫ 2 + sin ( 1 ) 4 + sin ( 2 ) f − 1 ( x ) d x = 3 + 2 sin 2 − sin 1 − cos 1 + cos 2 = 3 . 0 2 1
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 2 + sin 1 4 + sin 2 f − 1 ( y ) d y = ∫ 2 + sin 1 4 + sin 2 x d y = ∫ 1 2 x ( cos x + 2 ) d x = ∫ 1 2 x cos x d x + ∫ 1 2 2 x d x = x sin x − ∫ sin x d x + x 2 ∣ ∣ ∣ ∣ 1 2 = x sin x + cos x + x 2 ∣ ∣ ∣ ∣ 1 2 = 2 sin 2 − sin 1 + cos 2 − cos 1 + 4 − 1 ≈ 3 . 0 2 1 Note that d x d y = cos x + 2 By integration by parts