Inversion Game Real Strong

Calculus Level 5

A function f f is defined as f ( x ) = sin x + 2 x f(x) = \sin x + 2x .

Evaluate 2 + sin ( 1 ) 4 + sin ( 2 ) f 1 ( x ) d x \large \displaystyle \int _{2+\sin \left(1\right)}^{4+\sin \left(2\right)}f^{-1}(x) \ dx correct to 3 decimal places.


Clarifications: f 1 ( x ) f^{-1}(x) denotes the inverse of f ( x ) f(x) , i.e. if y = f ( x ) y = f(x) , then x = f 1 ( y ) x = f^{-1}(y) .


The answer is 3.021.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 17, 2017

I = 2 + sin 1 4 + sin 2 f 1 ( y ) d y = 2 + sin 1 4 + sin 2 x d y Note that d y d x = cos x + 2 = 1 2 x ( cos x + 2 ) d x = 1 2 x cos x d x + 1 2 2 x d x By integration by parts = x sin x sin x d x + x 2 1 2 = x sin x + cos x + x 2 1 2 = 2 sin 2 sin 1 + cos 2 cos 1 + 4 1 3.021 \begin{aligned} I & = \int_{2+\sin 1}^{4+\sin 2} f^{-1}(y) \ dy \\ & = \int_{2+\sin 1}^{4+\sin 2} x dy & \small \color{#3D99F6} \text{Note that }\frac {dy}{dx} = \cos x + 2 \\ & = \int_1^2 x(\cos x + 2) \ dx \\ & = {\color{#3D99F6} \int_1^2 x\cos x \ dx} + \int_1^2 2x \ dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = {\color{#3D99F6} x\sin x - \int \sin x dx} + x^2 \ \bigg|_1^2 \\ & = {\color{#3D99F6} x\sin x + \cos x} + x^2 \ \bigg|_1^2 \\ & = 2 \sin 2 - \sin 1 + \cos 2 - \cos 1 + 4 - 1 \\ & \approx \boxed{3.021} \end{aligned}

Lol nice :D

Arkajyoti Banerjee - 4 years ago

May be that's way the first step is called 'change of dummy variable' :P

Aman Bhandare - 4 years ago
Zach Abueg
May 17, 2017

Relevant wiki: Integration Tricks

I = 2 + sin 1 4 + sin 2 f 1 ( x ) d x = f ( 1 ) f ( 2 ) f 1 ( x ) d x Use the identity a b f ( x ) d x + f ( a ) f ( b ) f 1 ( x ) d x = b f ( b ) a f ( a ) for increasing one-to-one functions = 2 f ( 2 ) 1 f ( 1 ) 1 2 f ( x ) d x = 2 ( 4 + sin 2 ) ( 2 + sin 1 ) 1 2 sin x + 2 x d x = 6 + 2 sin 2 sin 1 [ x 2 cos x 1 2 ] = 3 + 2 sin 2 sin 1 + cos 2 cos 1 3.021 \begin{aligned} \displaystyle I & = \int_{2 + \sin 1}^{4 + \sin 2} f^{-1}(x) \ dx \\ & = \int_{f(1)}^{f(2)} f^{-1}(x) \ dx & \small \color{#3D99F6} \text{Use the identity }\int_a^b f(x) \ dx + \int_{f(a)}^{f(b)} f^{-1}(x) \ dx = bf(b) - af(a) \\ && \small \color{#3D99F6} \text{for increasing one-to-one functions} \\ & = 2f(2) - 1f(1) - \int_1^2 f(x) \ dx \\ & = 2\big(4 + \sin 2\big) - \big(2 + \sin 1\big) - \int_1^2 \sin x + 2x \ dx \\ & = 6 + 2\sin 2 - \sin 1 - \Bigg[x^2 - \cos x \bigg|_1^2\Bigg] \\ & = 3 + 2\sin 2 - \sin 1 + \cos 2 - \cos 1 \\ & \approx \boxed{3.021} \end{aligned}

I credit the solution writing grandmaster @Chew-Seong Cheong for my solution format; I'm slowly learning how to write better solutions :)

Zach Abueg - 4 years ago

From inspection, we have f ( 1 ) = 2 + sin 1 f(1)=2+\sin 1 and f ( 2 ) = 4 + sin 2 f(2)=4+\sin 2 .

NOTE: We don't need a graphing calculator for solving this question. We can solve this question by just graphing it on a paper. I've used Desmos Graphing Calculator so that a better view of the graph can be provided.

Let y = f ( x ) y=f(x) , then x = f 1 ( y ) x=f^{-1}\left(y\right) . We represent this on the x-y plane like this :

Thereby, we can conclude that 2 + sin ( 1 ) 4 + sin ( 2 ) f 1 ( y ) d y \large \displaystyle \int _{2+\sin \left(1\right)}^{4+\sin \left(2\right)}f^{-1}\left(y\right)dy (which is the same as 2 + sin ( 1 ) 4 + sin ( 2 ) f 1 ( x ) d x \large \displaystyle \int _{2+\sin \left(1\right)}^{4+\sin \left(2\right)}f^{-1}\left(x\right)dx ) is the area of the region C D F E CDFE . Furthermore, O B F E OBFE and O A D C OADC are rectangles and the area of the region A D F B ADFB is simply the integral 1 2 sin ( x ) + 2 x d x \large \displaystyle \int _1^2\sin \left(x\right)+2x\ dx .

We also have a r ( O A D C ) + a r ( A D F B ) + a r ( C D F E ) = a r ( O B F E ) ar(OADC) + ar(ADFB) + ar(CDFE) = ar(OBFE)

1 ( 2 + sin 1 ) + ( 1 2 sin ( x ) + 2 x d x ) + ( 2 + sin ( 1 ) 4 + sin ( 2 ) f 1 ( x ) d x ) = 2 ( 4 + sin 2 ) \large \displaystyle \implies 1(2+\sin 1) + ( \int _1^2\sin \left(x\right)+2x\ dx) + (\int _{2+\sin \left(1\right)}^{4+\sin \left(2\right)}f^{-1}\left(x\right)dx) = 2(4 + \sin 2)

2 + sin 1 + cos 1 cos 2 + 3 + ( 2 + sin ( 1 ) 4 + sin ( 2 ) f 1 ( x ) d x ) = 8 + 2 sin 2 \large \displaystyle \implies 2+\sin 1 + \cos 1 - \cos 2 + 3 + (\int _{2+\sin \left(1\right)}^{4+\sin \left(2\right)}f^{-1}\left(x\right)dx) = 8 + 2\sin 2

2 + sin ( 1 ) 4 + sin ( 2 ) f 1 ( x ) d x = 3 + 2 sin 2 sin 1 cos 1 + cos 2 = 3.021 \large \displaystyle \implies \int _{2+\sin \left(1\right)}^{4+\sin \left(2\right)}f^{-1}\left(x\right)dx = 3\ +\ 2\sin 2-\sin 1-\cos 1+\cos 2 = \boxed{3.021}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...