Inversion of Double Summations.

Algebra Level 3

Let

S = β = 1 20 α = 1 20 tan 1 ( α β ) . \large S = \sum _{ \beta =1 }^{ 20 }{ \sum _{ \alpha =1 }^{ 20 }{ \tan ^{ -1 }{ \left( \frac { \alpha }{ \beta } \right) } } }.

Evaluate S π \dfrac {S}{\pi} .


The answer is 100.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 19, 2018

S = β = 1 20 α = 1 20 tan 1 ( α β ) Add another S with α and β swapped. = 1 2 ( β = 1 20 α = 1 20 tan 1 ( α β ) + α = 1 20 β = 1 20 tan 1 ( β α ) ) Swapped and order of summation. = 1 2 ( β = 1 20 α = 1 20 tan 1 ( α β ) + β = 1 20 α = 1 20 tan 1 ( β α ) ) = 1 2 β = 1 20 α = 1 20 ( tan 1 ( α β ) + tan 1 ( β α ) ) = 1 2 β = 1 20 α = 1 20 ( tan 1 ( α β ) + cot 1 ( α β ) ) = 1 2 β = 1 20 α = 1 20 ( tan 1 ( α β ) + π 2 tan 1 ( α β ) ) = 1 2 β = 1 20 α = 1 20 π 2 = 20 × 20 2 × π 2 = 100 π \begin{aligned} S & = \sum_{\color{#3D99F6}\beta=1}^{20} \sum_{\color{#D61F06}\alpha=1}^{20} \tan^{-1} \left(\frac {\color{#D61F06}\alpha}{\color{#3D99F6}\beta} \right) & \small \color{#3D99F6} \text{Add another }S \text{ with }\alpha \text{ and }\beta \text{ swapped.} \\ & = \frac 12 \left(\sum_{\color{#3D99F6}\beta=1}^{20} \sum_{\color{#D61F06}\alpha=1}^{20} \tan^{-1} \left(\frac {\color{#D61F06}\alpha}{\color{#3D99F6}\beta} \right) + \sum_{\color{#D61F06}\alpha=1}^{20} \sum_{\color{#3D99F6}\beta=1}^{20} \tan^{-1} \left(\frac {\color{#3D99F6}\beta}{\color{#D61F06}\alpha} \right) \right) & \small \color{#3D99F6} \text{Swapped and order of summation.} \\ & = \frac 12 \left(\sum_{\color{#3D99F6}\beta=1}^{20} \sum_{\color{#D61F06}\alpha=1}^{20} \tan^{-1} \left(\frac {\color{#D61F06}\alpha}{\color{#3D99F6}\beta} \right) + \sum_{\color{#3D99F6}\beta=1}^{20} \sum_{\color{#D61F06}\alpha=1}^{20} \tan^{-1} \left(\frac {\color{#3D99F6}\beta}{\color{#D61F06}\alpha} \right) \right) \\ & = \frac 12 \sum_{\beta=1}^{20} \sum_{\alpha=1}^{20} \left(\tan^{-1} \left(\frac {\alpha}{\beta} \right) + \tan^{-1} \left(\frac {\beta}{\alpha} \right) \right) \\ & = \frac 12 \sum_{\beta=1}^{20} \sum_{\alpha=1}^{20} \left(\tan^{-1} \left(\frac {\alpha}{\beta} \right) + \cot^{-1} \left(\frac \alpha \beta \right) \right) \\ & = \frac 12 \sum_{\beta=1}^{20} \sum_{\alpha=1}^{20} \left(\tan^{-1} \left(\frac {\alpha}{\beta} \right) + \frac \pi 2 - \tan^{-1} \left(\frac \alpha \beta \right) \right) \\ & = \frac 12 \sum_{\beta=1}^{20} \sum_{\alpha=1}^{20} \frac \pi 2 = \frac {20\times 20}2 \times \frac \pi 2 = 100 \pi \end{aligned}

Therefore, S π = 100 \dfrac S\pi = \boxed{100} .

Parth Sankhe
Nov 19, 2018

Important Identity for this problem:

tan 1 a b + tan 1 b a = π 2 \tan ^{-1} \frac {a}{b} + \tan ^{-1} \frac {b}{a}=\frac {π}{2}

(I have denoted α \alpha by a a and β \beta by b b in this solution)

There will be a total of 20×20=400 terms

For every a b \frac {a}{b} term there will be a b a \frac {b}{a} term, except when a = b a=b . Addition of those two terms will give us π/2 for every pair.

There are 20 terms where a = b a=b , and 380 other terms. Thus, the total number of pairs that will give π 2 \frac {π}{2} is 380 2 = 190 \frac {380}{2}=190 .

The other 20 terms will each have a = b a=b , and tan 1 1 = π 4 \tan ^{-1} 1=\frac {π}{4}

Therefore, the answer is 190 π 2 + 20 π 4 = 100 π 190\cdot \frac {π}{2} + 20\cdot \frac {π}{4}=100π

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...