IOE, question

Geometry Level 3

What is the range of the values of k k such that k cos θ 3 sin θ = k + 1 k\cos\theta - 3\sin\theta = k+1 has a real solution θ ? \theta?

k 7 k≤7 k 4 k≤4 k 5 k≤5 k 3 k≤3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rewrite the given equation as

k 2 + 9 ( k k 2 + 9 cos θ 3 k 2 + 9 sin θ ) = k + 1 \sqrt{k^{2} + 9}\left(\dfrac{k}{\sqrt{k^{2} + 9}} \cos \theta - \dfrac{3}{\sqrt{k^{2} + 9}} \sin \theta\right) = k + 1 \Longrightarrow

k 2 + 9 sin ( α θ ) = k + 1 sin ( α θ ) = k + 1 k 2 + 9 \sqrt{k^{2} + 9} \sin(\alpha - \theta) = k + 1 \Longrightarrow \sin(\alpha - \theta) = \dfrac{k + 1}{\sqrt{k^{2} + 9}} , where α = sin 1 ( k k 2 + 9 ) \alpha = \sin^{-1}\left(\dfrac{k}{\sqrt{k^{2} + 9}}\right) .

As the range of the sine function is [ 1 , 1 ] [-1,1] , we then require that

1 k + 1 k 2 + 9 1 k 2 + 9 k + 1 k 2 + 9 -1 \le \dfrac{k + 1}{\sqrt{k^{2} + 9}} \le 1 \Longrightarrow -\sqrt{k^{2} + 9} \le k + 1 \le \sqrt{k^{2} + 9} .

For k 1 k \ge -1 we have that k + 1 k 2 + 9 ( k + 1 ) 2 k 2 + 9 2 k 8 k 4 k + 1 \le \sqrt{k^{2} + 9} \Longrightarrow (k + 1)^{2} \le k^{2} + 9 \Longrightarrow 2k \le 8 \Longrightarrow k \le 4 .

For k 1 k \le - 1 we have that k 2 + 9 k + 1 k 2 + 9 ( k + 1 ) 2 8 2 k 4 k -\sqrt{k^{2} + 9} \le k + 1 \Longrightarrow k^{2} + 9 \ge (k + 1)^{2} \Longrightarrow 8 \ge 2k \Longrightarrow 4 \ge k .

So in general the original equation will have a solution for k 4 \boxed{k \le 4} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...