Irrational Bases 2.

Level 2

Let ϕ = 1 + 5 2 \phi = \dfrac{1 + \sqrt{5}}{2} and α = 2 + 1 \alpha = \sqrt{2} + 1 .

Which one of the five choices below are true?

1: ϕ 1 = ( 0.010101010101... ) ϕ \quad \phi - 1 = (0.010101010101 ... )_{\phi} and α 2 2 = ( 0.010101010101... ) α \dfrac{\alpha - 2}{2} = (0.010101010101 ... )_{\alpha}

2: ϕ 1 = ( 0.101010101010... ) ϕ \quad \phi - 1 = (0.101010101010 ... )_{\phi} and α 2 2 = ( 0.010101010101... ) α \dfrac{\alpha - 2}{2} = (0.010101010101 ... )_{\alpha}

3: ϕ 1 = ( 0.100100100100... ) ϕ \quad \phi - 1 = (0.100100100100 ...)_{\phi} and α 2 2 = ( 0.001001001001... ) α \dfrac{\alpha - 2}{2} = (0.001001001001 ... )_{\alpha}

4: ϕ 1 = ( 0.101010101010... ) ϕ \quad \phi - 1 = (0.101010101010 ... )_{\phi} and α 2 2 = ( 0.101010101010... ) α \dfrac{\alpha - 2}{2} = (0.101010101010 ... )_{\alpha}

5: ϕ 1 = ( 0.010101010101... ) ϕ \quad \phi - 1 = (0.010101010101 ... )_{\phi} and α 2 2 = ( 0.101010101010... ) α \dfrac{\alpha - 2}{2} = (0.101010101010 ... )_{\alpha}

4 5 1 2 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Feb 9, 2019

ϕ \phi is one solution to x 2 x 1 = 0 x^2 - x - 1 = 0

ϕ 2 = ϕ + 1 ϕ 2 1 = ϕ 1 ϕ 2 1 = 1 ϕ = 2 5 + 1 = 5 1 2 = ϕ 1 \implies \phi^2 = \phi + 1 \implies \phi^2 - 1 = \phi \implies \dfrac{1}{\phi^2 - 1} = \dfrac{1}{\phi} = \dfrac{2}{\sqrt{5} + 1} = \dfrac{\sqrt{5} - 1}{2} = \phi - 1

ϕ 1 = 1 ϕ 2 1 = 1 ϕ 2 1 1 ϕ 2 = \implies \phi - 1 = \dfrac{1}{\phi^2 - 1} = \dfrac{\dfrac{1}{\phi^2}}{1 - \dfrac{1}{\phi^2}} = n = 1 ( 1 ϕ 2 ) n = ( 0.010101010101... ) ϕ \sum_{n = 1}^{\infty} (\dfrac{1}{\phi^2})^{n} = \boxed{(0.010101010101 ...)_{\phi}}

α \alpha is one solution to x 2 2 x 1 = 0 x^2 - 2x - 1 = 0

α 2 = 2 α + 1 α 2 1 = 2 α 1 α 2 1 = 1 2 α = 1 2 ( 2 + 1 ) = 2 1 2 = α 2 2 \implies \alpha^2 = 2\alpha + 1 \implies \alpha^2 - 1 = 2\alpha \implies \dfrac{1}{\alpha^2 - 1} = \dfrac{1}{2\alpha} = \dfrac{1}{2(\sqrt{2} + 1)} = \dfrac{\sqrt{2} - 1}{2} = \dfrac{\alpha - 2}{2}

α 2 2 = 1 α 2 1 = 1 α 2 1 1 α 2 = n = 1 ( 1 α 2 ) n = ( 0.010101010101... ) α \implies \dfrac{\alpha - 2}{2} = \dfrac{1}{\alpha^2 - 1} = \dfrac{\dfrac{1}{\alpha^2}}{1 - \dfrac{1}{\alpha^2}} = \sum_{n = 1}^{\infty} (\dfrac{1}{\alpha^2})^{n} = \boxed{(0.010101010101 ...)_{\alpha}}

\therefore Choice (1) is true.

In general, if we let ϕ n = n 2 + 4 + n 2 \phi_n = \frac {\sqrt{n^2+4}+n}2 be one solution to x 2 n x 1 = 0 x^2-nx-1=0 , then

ϕ n 2 n ϕ n 1 = 0 ϕ n 2 1 = n ϕ n 1 ϕ n 2 1 = 1 n ϕ n = 1 n n 2 + 4 + n 2 = 2 n n 2 + 4 + n 2 2 n n 2 + 4 + n 2 = 1 ϕ n 2 1 = 1 ϕ n 2 1 1 ϕ n 2 = k = 1 ( 1 ϕ n 2 ) k = ( 0.01010101 ) ϕ n \begin{aligned} \phi_n^2-n\phi_n-1 &= 0 \\ \Leftrightarrow \phi_n^2-1 &= n\phi_n \\ \Leftrightarrow \frac 1{\phi_n^2-1} &= \frac 1{n\phi_n} \\ &= \frac 1{n\frac{\sqrt{n^2+4}+n}2} \\ &= \frac 2{n\sqrt{n^2+4}+n^2} \\ \Leftrightarrow \frac 2{n\sqrt{n^2+4}+n^2} &= \frac 1{\phi_n^2-1} \\ &= \frac {\frac 1{\phi_n^2}}{1-\frac 1{\phi_n^2}} \\ &= \sum_{k=1}^\infty \left( \frac 1{\phi_n^2} \right)^k \\ &= (0.01010101\ldots)_{\phi_n} \end{aligned}

Here are the first cases

n 2 n n 2 + 4 + n 2 1 2 5 + 1 2 1 8 + 4 3 2 3 13 + 9 4 1 4 5 + 16 0 \begin{array}{cc} n & \frac 2{n\sqrt{n^2+4}+n^2} \\ 1 & \frac 2{\sqrt{5}+1} \\ 2 & \frac 1{\sqrt{8}+4} \\ 3 & \frac 2{3\sqrt{13}+9} \\ 4 & \frac 1{4\sqrt{5}+16} \\ \vdots & \vdots \\ \infty & 0 \end{array}

Henry U - 2 years, 4 months ago

Log in to reply

Nice. You generalized the problem.

I would state the problem as follows:

Let n N n \in \mathbb{N} and ϕ n = n 2 + 4 + n 2 \phi_{n} = \dfrac{\sqrt{n^2 + 4} + n}{2}

Which is a representation of ϕ n n n \dfrac{\phi_{n} - n}{n} in base ϕ n \phi_{n} . (Give choices)

Solution:

ϕ n \phi_{n} is one solution to x 2 n x 1 = 0 x^2 - nx - 1 = 0

ϕ n 2 = n ϕ n + 1 ϕ n 1 n ϕ n 1 ϕ n 2 1 = 1 n ϕ n = ( n 2 + 4 n 2 ) n \implies \phi_{n}^2 = n\phi_{n} + 1 \implies \phi_{n} - 1 - n\phi_{n} \implies \dfrac{1}{\phi_{n}^2 - 1} = \dfrac{1}{n\phi_{n}} = \dfrac{(\dfrac{\sqrt{n^2 + 4} - n}{2})}{n} = ϕ n n n ϕ n n n = 1 ϕ n 2 1 = 1 ϕ n 2 1 1 ϕ n 2 = = \dfrac{\phi_{n} - n}{n} \implies \dfrac{\phi_{n} - n}{n} = \dfrac{1}{\phi_{n}^2 - 1} = \dfrac{\dfrac{1}{\phi_{n}^2}}{1 - \dfrac{1}{\phi_{n}^2}} = m = 1 ( 1 ϕ n 2 ) m = ( 0.010101010101... ) ϕ n \sum_{m = 1}^{\infty} (\dfrac{1}{\phi_{n}^2})^{m} = \boxed{(0.010101010101 ...)_{\phi_{n}}} .

Rocco Dalto - 2 years, 4 months ago

And even more general, if ϕ n , m \phi_{n,m} is a solution to x m n x 1 = 0 x^m - nx -1 = 0 (which I can't find explicitly), then the base ϕ n , m \phi_{n,m} representation of 1 n ϕ n , m \frac 1{n\phi_{n,m}} is n = 1 ( 1 ϕ n , m m ) n \displaystyle \sum_{n=1}^\infty \left( \frac 1{\phi_{n,m}^m} \right)^n , which is a 1 at every m m -th digit.

Henry U - 2 years, 4 months ago

Log in to reply

Very nice!

Let α = ϕ n . m \alpha = \phi_{n.m} be solution to x m n x 1 = 0 α m = n α + 1 α m 1 = n α 1 α m 1 = 1 n α x^m - nx - 1 = 0 \implies \alpha^{m} = n\alpha + 1 \implies \alpha^m - 1 = n\alpha \implies \dfrac{1}{\alpha^m - 1} = \dfrac{1}{n\alpha} \implies

1 n α = 1 α m 1 1 α m = j = 1 ( 1 ϕ n , m m ) j \dfrac{1}{n\alpha} = \dfrac{\dfrac{1}{\alpha^m}}{1 - \dfrac{1}{\alpha^m}} = \displaystyle\sum_{j = 1}^{\infty} (\dfrac{1}{\phi_{n,m}^m})^j .

Note: For m = 3 m = 3 and n = 2 n = 2 we obtain: x 3 2 x 1 = 0 ( x + 1 ) ( x 2 x 1 ) = 0 x = 1 , 1 ± 5 2 x^3 - 2x - 1 = 0 \implies (x + 1)(x^2 - x - 1) = 0 \implies x = -1, \dfrac{1 \pm \sqrt{5}}{2} , so that ϕ \phi is a root of above cubic.

Problem: Which is a representation of ϕ 1 2 \dfrac{\phi - 1}{2} in base ϕ \phi (State Choices)

ϕ 1 2 = ( 0.001001001001... ) ϕ \dfrac{\phi - 1}{2} = (0.001001001001 ...)_{\phi} .

Of course you could just do the above using ϕ \phi as one root of x 2 x 1 = 0 x^2 - x - 1 = 0 .

I.E; ϕ 2 = ϕ + 1 ϕ 3 = 2 ϕ + 1 1 ϕ 3 1 = 1 2 ϕ = ϕ 1 2 = j = 1 ( 1 j 3 ) j = ( 0.001001001001... ) ϕ \phi^2 = \phi + 1 \implies \phi^3 = 2\phi + 1 \implies \dfrac{1}{\phi^3 - 1} = \dfrac{1}{2\phi} = \dfrac{\phi - 1}{2} = \sum_{j = 1}^{\infty} (\dfrac{1}{j^3})^{j} = (0.001001001001 ...)_{\phi}

Rocco Dalto - 2 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...