Irrational Equations

Algebra Level 5

We are given the following system of equations

{ 1 1 + 2 x 2 + 1 1 + 2 y 2 = 2 1 + 2 x y , x ( 1 2 x ) + y ( 1 2 y ) = 2 9 . \begin{cases} \frac{1}{\sqrt{1+2x^2}}+\frac{1}{\sqrt{1+2y^2}}=\frac{2}{\sqrt{1+2xy}}, \\ \sqrt{x(1-2x)}+\sqrt{y(1-2y)}=\frac{2}{9}. \end{cases}

If x x can be expressed in the form a ± b c , \frac{a\pm\sqrt{b}}{c}, where a , b a,b and c c are positive integers and b b is not divisible by the square of any prime, find the value of a + b + c . a+b+c.


The answer is 118.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Victor Loh
Aug 17, 2014

Firstly, we know that 1 + 2 x y > 0 1+2xy>0 for 2 1 + 2 x y \frac{2}{\sqrt{1+2xy}} to be real.

Since x ( 1 2 x ) , y ( 1 2 y ) 0 \sqrt{x(1-2x)}, \sqrt{y(1-2y)} \geq 0 , we have x ( 1 2 x ) , y ( 1 2 y ) 0 x(1-2x), y(1-2y) \geq 0 . By solving them, we obtain

0 x , y 1 2 . 0 \leq x, y \leq \frac{1}{2}.

We now proceed to show that for 0 x , y 1 2 0 \leq x, y \leq \frac{1}{2} ,

1 1 + 2 x 2 + 1 1 + 2 y 2 2 1 + 2 x y ( 1 ) \frac{1}{\sqrt{1+2x^2}}+\frac{1}{\sqrt{1+2y^2}} \leq \frac{2}{\sqrt{1+2xy}} \cdots (1)

In fact,

( 1 ) 1 1 + 2 x 2 + 1 1 + 2 y 2 + 2 ( 1 + 2 x 2 ) ( 1 + 2 y 2 ) 4 1 + 2 x y (1) \Leftrightarrow \frac{1}{1+2x^2}+\frac{1}{1+2y^2}+\frac{2}{\sqrt{(1+2x^2)(1+2y^2)}} \leq \frac{4}{1+2xy}

( 1 1 + 2 x 2 + 1 1 + 2 y 2 2 1 + 2 x y ) + ( 2 4 x 2 y 2 + 2 x 2 + 2 y 2 + 1 2 2 x y + 1 ) 0 \Leftrightarrow \left(\frac{1}{1+2x^2}+\frac{1}{1+2y^2}-\frac{2}{1+2xy}\right)+\left(\frac{2}{\sqrt{4x^2y^2+2x^2+2y^2+1}}-\frac{2}{2xy+1}\right) \leq 0

[ 2 x ( x y ) ( 1 + 2 x 2 ) ( 1 + 2 y 2 ) + 2 y ( x y ) ( 1 + 2 y 2 ) ( 1 + 2 x y ) ] + ( 2 4 x 2 y 2 + 2 x 2 + 2 y 2 + 1 2 2 x y + 1 ) 0 \Leftrightarrow\left[-\frac{2x(x-y)}{(1+2x^2)(1+2y^2)}+\frac{2y(x-y)}{(1+2y^2)(1+2xy)}\right]+\left(\frac{2}{\sqrt{4x^2y^2+2x^2+2y^2+1}}-\frac{2}{2xy+1}\right) \leq 0

2 ( x y ) 2 ( 1 2 x y ) ( 1 + 2 x y ) ( 1 + 2 x 2 ) ( 1 + 2 y 2 ) + ( 2 4 x 2 y 2 + 2 x 2 + 2 y 2 + 1 2 2 x y + 1 ) 0 \Leftrightarrow -\frac{2(x-y)^2(1-2xy)}{(1+2xy)(1+2x^2)(1+2y^2)}+\left(\frac{2}{\sqrt{4x^2y^2+2x^2+2y^2+1}}-\frac{2}{2xy+1}\right) \leq 0

On the left hand side, the first term is clearly less than or equal to 0 0 , and for the second term,

2 4 x 2 y 2 + 2 x 2 + 2 y 2 + 1 2 4 x 2 y 2 + 4 x y + 1 = 2 2 x y + 1 \frac{2}{\sqrt{4x^2y^2+2x^2+2y^2+1}} \leq \frac{2}{\sqrt{4x^2y^2+4xy+1}}=\frac{2}{2xy+1}

This implies that it is also less than or equal to 0 0 , so ( 1 ) (1) is proven, and equality holds if and only if x = y x=y .

Hence, the second equation becomes

x ( 1 2 x ) = y ( 1 2 y ) = 1 9 , \sqrt{x(1-2x)}=\sqrt{y(1-2y)}=\frac{1}{9},

which yields x = y = 9 ± 73 36 x=y=\frac{9\pm\sqrt{73}}{36} . Thus a = 9 , b = 73 , c = 36 a=9, b=73, c=36 , and the desired answer is 118 \boxed{118} . \square

great solution, but how did you think bout it like that lol

Joseph Varghese - 6 years, 9 months ago

i did the same thing. but i thought we can solve it using trigonometry.

Srikanth Tupurani - 1 year, 10 months ago
Michael Mendrin
Aug 17, 2014

I see that you fixed the original posting x x ( 1 2 x ) + y ( 1 2 y ) = 2 9 x\sqrt { x(1-2x) } +\sqrt { y(1-2y) } =\frac { 2 }{ 9 } . Now, finally, this problem has an answer.

First of all, if y = x y=x , then the top equation is obviously true. Then, letting y = x y=x , the 2nd equation quickly becomes 162 x 2 81 x + 1 = 0 162{ x }^{ 2 }-81x+1=0 , which leads directly to the solution.

Can we obtain algebraically that x = y x = y ?

Devika Mathur - 6 years, 10 months ago

Log in to reply

I have posted a solution @Devika Mathur

Victor Loh - 6 years, 10 months ago

Log in to reply

Thanks :) @Victor Loh

Devika Mathur - 6 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...