Irrational Integral

Calculus Level 3

Compute the following integral:

2 1 1 1 x 2 d x \displaystyle 2\int_{-1}^{1}\sqrt{1-x^2}dx

π 2 \dfrac{\pi}{2} 2 π 2\pi π \pi π 2 \pi^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Karan Chatrath
Mar 14, 2021

The curve y = 1 x 2 y= \sqrt{1-x^2} represents the potion of the circle^with unit radius x 2 + y 2 = 1 x^2+y^2=1 first quadrant.

The area: 0 1 1 x 2 d x \int_{0}^{1} \sqrt{1-x^2} \ dx

Represents the area of the circle in the first quadrant which is essentially the area of a quarter circle.

The area: 1 1 1 x 2 d x \int_{-1}^{1} \sqrt{1-x^2} \ dx

Represents the area of the circle with unit radius above the X-axis which is essentially the area of a semi-circle.

Therefore the area: 2 1 1 1 x 2 d x 2\int_{-1}^{1} \sqrt{1-x^2} \ dx

Is twice the area of a semicircle of radius 1 1 which is the area of a complete circle. Therefore, the answer is π r 2 = π \pi r^2 = \boxed{\pi}

Dwaipayan Shikari
Mar 12, 2021

1 1 1 x 2 d x \int_{-1}^1 \sqrt{1-x^2}dx Take x 2 = t x^2=t , the integral becomes 2 0 1 t 1 / 2 1 t d t 2\int_0^1 t^{-1/2} \sqrt{1-t} dt = 2 B ( 1 2 , 3 2 ) = 2 Γ ( 1 2 ) Γ ( 3 2 ) Γ ( 2 ) =2\Beta{(\dfrac{1}{2},\dfrac{3}{2})}=2\dfrac{\Gamma{(\dfrac{1}{2})}\Gamma{(\dfrac{3}{2})}}{\Gamma{(2)}}

= 2 × π × π 2 = π = 2×\sqrt{π}×\dfrac{\sqrt{π}}{2} =\boxed{π} Relevant wiki

- Beta function

I = 2 1 1 1 x 2 d x = 1 1 1 x 2 d x + 1 1 1 x 2 d x I= \displaystyle 2\cdot \int_{-1}^1 \sqrt{1-x^2}\, dx = \int_{-1}^1 \sqrt{1-x^2}\, dx + \int_{1}^{-1} -\sqrt{1-x^2}\, dx

Note that if S = { ( x , y ) R 2 : x 2 + y 2 1 } S= \{ (x,y) \in \mathbb{R}^2 : x^2+y^2\leq1\} , this sum of integrals is exactly the area integral:

I = S d A = S × ( 0 , x , 0 ) d A I=\iint_S\, dA = \iint_S \vec{\nabla}\times (0,x,0)\, d\vec{A}

And, now, using Stokes' Theorem , we find out:

I = S ( 0 , x , 0 ) d l I=\oint_{\partial S} (0,x,0) \cdot d\vec{l}

As S \partial S is the unit circle, we can use polar coordinates:

I = 0 2 π ( 0 , cos ( θ ) , 0 ) ( sin ( θ ) , cos ( θ ) , 0 ) d θ = 0 2 π cos 2 ( θ ) d θ I=\int_{0}^{2\pi} (0,\cos(\theta), 0) \cdot (-\sin(\theta), \cos(\theta), 0)\, d\theta = \int_{0}^{2\pi} \cos^2(\theta)\, d\theta

I = 0 2 π 1 + cos ( 2 θ ) 2 d θ = 0 2 π 1 2 d θ + 1 2 0 2 π cos ( 2 θ ) d θ \Leftrightarrow I= \int_{0}^{2\pi} \frac{1+\cos(2\theta)}{2}\, d\theta = \int_{0}^{2\pi} \frac{1}{2}\, d\theta + \frac{1}{2}\cdot \int_{0}^{2\pi} \cos(2\theta)\, d\theta

I = π + 1 2 1 2 ( sin ( 4 π ) sin ( 0 ) ) = π \Leftrightarrow I = \pi + \frac{1}{2}\cdot \frac{1}{2}\cdot (\sin(4\pi) - \sin(0)) = \boxed{\pi}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...