irrational to integer

Algebra Level 3

12 24 + 39 104 12 + 24 + 39 + 104 = ? \sqrt{12-\sqrt{24}+\sqrt{39}-\sqrt{104}}-\sqrt{12+\sqrt{24}+\sqrt{39}+\sqrt{104}}=?


The answer is -4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 17, 2018

D = 12 24 + 39 104 12 + 24 + 39 + 104 Let a = 12 + 39 and b = 24 + 104 = a b a + b D 2 = ( a b ) 2 a 2 b 2 + ( a + b ) = 2 a 2 a 2 b 2 = 24 + 2 39 2 183 + 24 39 128 16 39 = 24 + 2 39 2 55 + 8 39 = 24 + 2 39 2 ( 4 + 39 ) 2 = 24 + 2 39 8 2 39 = 16 D = 4 Note that D < 0 \begin{aligned} D & = \sqrt{12-\sqrt{24}+\sqrt{39}-\sqrt{104}} - \sqrt{12+\sqrt{24}+\sqrt{39}+\sqrt{104}} & \small \color{#3D99F6} \text{Let }a = 12 + \sqrt{39} \text{ and }b = \sqrt{24} + \sqrt{104} \\ & = \sqrt{a-b} - \sqrt{a+b} \\ \implies D^2 & = (a-b) - 2\sqrt{a^2 - b^2} + (a+b) \\ & = 2a - 2\sqrt{a^2-b^2} \\ & = 24 + 2\sqrt{39} - 2\sqrt{183+24\sqrt{39} - 128 - 16\sqrt{39}} \\ & = 24 + 2\sqrt{39} - 2\sqrt{55+8\sqrt{39}} \\ & = 24 + 2\sqrt{39} - 2\sqrt{(4+\sqrt{39})^2} \\ & = 24 + 2\sqrt{39} - 8 - 2\sqrt{39} \\ & = 16 \\ \implies D & = \boxed{- 4} & \small \color{#3D99F6} \text{Note that }D < 0 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...