Irrationality In Big Sums

Algebra Level 4

Evaluate

k = 1 2196 1 k 2 3 + k ( k + 1 ) 3 + ( k + 1 ) 2 3 \large\ \displaystyle \sum _{ k=1 }^{ 2196 }{ \frac { 1 }{ \sqrt [ 3 ]{ { k }^{ 2 } } + \sqrt [ 3 ]{ k(k + 1) } + \sqrt [ 3 ]{ { \left( k + 1 \right) }^{ 2 } } } } .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Alexander Becker
May 8, 2018

The denominator looks like the second factor of the difference of two cubes identity x 3 y 3 = ( x y ) ( x 2 + x y + y 2 ) x^3 - y^3 = (x-y)(x^2+xy+y^2) with x = k + 1 3 x= \sqrt [ 3 ]{ k+1 } and y = k 3 y = \sqrt [ 3 ]{ k } . Indeed, from k + 1 3 3 k 3 3 = ( k + 1 3 k 3 ) ( k 2 3 + k ( k + 1 ) 3 + ( k + 1 ) 2 3 ) \sqrt [ 3 ]{ k+1 }^{ 3 } - \sqrt [ 3 ]{ k }^{ 3 } = ( \sqrt [ 3 ] { k+1 } - \sqrt [ 3 ]{ k}) ( \sqrt [ 3 ]{ { k }^{ 2 } } + \sqrt [ 3 ]{ k(k + 1) } + \sqrt [ 3 ]{ { ( k + 1 ) }^{ 2 } } )

it directly follows that

1 k 2 3 + k ( k + 1 ) 3 + ( k + 1 ) 2 3 = k + 1 3 k 3 ( k + 1 ) 3 3 k 3 3 = k + 1 3 k 3 k + 1 k = k + 1 3 k 3 \frac { 1 }{ \sqrt [ 3 ]{ { k }^{ 2 } } + \sqrt [ 3 ]{ k(k + 1) } + \sqrt [ 3 ]{ { \left( k + 1 \right) }^{ 2 } } }= \frac{\sqrt[3]{k+1}-\sqrt[3]{k}}{\sqrt[3]{(k+1)^{3}}-\sqrt[3]{k^{3}}} = \frac{\sqrt[3]{k+1}-\sqrt[3]{k}}{k+1-k}=\sqrt[3]{k+1}-\sqrt[3]{k} .

Thus, this sum telescopes to 2197 3 1 3 = 13 1 = 12. \sqrt [ 3 ]{ 2197 } - \sqrt [3]{ 1 } = 13-1 = 12.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...