Irreducible Ratio

Geometry Level pending

Let A B C ABC be a triangle and let a a , b b and c c be the lengths of the sides opposite to the vertices A A , B B and C C , respectively. If a 4 b + c = 0 , 2 a + b 2 c = 0 , a - 4b + c = 0, 2a + b - 2c = 0 , then sin A : sin B : sin C \sin A : \sin B : \sin C can be expressed as an irreducible ratio p : q : r p:q:r , where p p , q q and r r are positive integers. What is p + q + r ? p+q+r?

22 22 20 20 19 19 21 21

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Nov 15, 2020

Solving the above system of equations yields a = 7 9 k , b = 4 9 k , c = k a = \frac{7}{9}k, b = \frac{4}{9}k, c = k for k R + . k \in \mathbb{R^{+}}. Applying the Law of Sines gives us:

b a sin A = sin B 4 7 sin A = sin B ; \frac{b}{a} \cdot \sin A=\sin B \Rightarrow \frac{4}{7} \cdot \sin A = \sin B;

c a sin A = sin C 9 7 sin A = sin C \frac{c}{a} \cdot \sin A = \sin C \Rightarrow \frac{9}{7} \cdot \sin A = \sin C .

Finally, we have the ratio sin A : sin B : sin C = sin A : 4 7 sin A : 9 7 sin A = ( sin A 7 ) [ 7 : 4 : 9 ] 7 : 4 : 9 = p : q : r . \sin A : \sin B: \sin C = \sin A: \frac{4}{7} \cdot \sin A: \frac{9}{7} \cdot \sin A = (\frac{\sin A}{7}) \cdot [7:4:9] \Rightarrow 7:4:9 = p:q:r. Hence, p + q + r = 7 + 4 + 9 = 20 . p+q+r = 7+4+9 = \boxed{20}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...