Irregularity

( n 1 ) ( 1 + 1 2 ) ( n 2 ) + ( 1 + 1 2 + 1 3 ) ( n 3 ) + ( 1 ) n 1 ( 1 + 1 2 + + 1 n ) ( n n ) { n \choose 1} - \left (1 + \frac 1 2 \right ) { n \choose 2} + \left (1 + \frac 1 2 + \frac 1 3 \right ) { n \choose 3} - \ldots \\ + (-1)^{n-1} \left (1 + \frac 1 2 + \ldots + \frac 1 n \right ) { n \choose n}

If the value of the expression above equals to S S , then what can we conclude?

S = 23 S= 23 1/S is not an integer 1 S \frac{1}{S} is an integer s= 46 31 \frac{46}{31} S = 0 S=0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Shubham Garg
Jun 13, 2015

We can write

T r = ( 1 ) r 1 ( 1 + 1 2 + 1 3 + . . . . . + 1 r ) ( n r ) T_{r}=(-1)^{r-1} (1+ \frac 12+ \frac 13+.....+\frac1r ) { n \choose r}

T r = ( 1 ) r 1 0 1 ( 1 + x + x 2 + x 3 . . . . . + x r 1 ) ( n r ) \Rightarrow T_{r}=(-1)^{r-1}\int_0^1\left(1+x+x^2+x^3.....+x^{r-1}\right){n\choose r}

r = 1 n T r = r = 1 n ( 1 ) r 1 0 1 ( 1 + x + x 2 + x 3 . . . . . + x r 1 ) ( n r ) \Rightarrow \sum_{r=1}^nT_{r}= \sum_{r=1}^n(-1)^{r-1}\int_0^1\left(1+x+x^2+x^3.....+x^{r-1}\right){n\choose r}

r = 1 n T r = 0 1 r = 1 n ( 1 ) r 1 ( 1 + x + x 2 + x 3 . . . . . + x r 1 ) ( n r ) \Rightarrow \sum_{r=1}^nT_{r}= \int_0^1\sum_{r=1}^n(-1)^{r-1}\left(1+x+x^2+x^3.....+x^{r-1}\right){n\choose r}

r = 1 n T r = 0 1 r = 1 n ( 1 ) r 1 ( x r 1 x 1 ) ( n r ) \Rightarrow \sum_{r=1}^nT_{r}= \int_0^1\sum_{r=1}^n(-1)^{r-1}\left(\frac{x^r-1}{x-1}\right){n\choose r}

r = 1 n T r = 0 1 1 x 1 r = 1 n ( 1 ) r 1 ( x r 1 ) ( n r ) \Rightarrow \sum_{r=1}^nT_{r}= \int_0^1\frac{1}{x-1}\sum_{r=1}^n(-1)^{r-1} \left(x^r-1\right){n\choose r}

r = 1 n T r = 0 1 1 x 1 r = 1 n ( 1 ) r 1 ( x r ) ( n r ) ( 1 ) r 1 ( n r ) \Rightarrow \sum_{r=1}^nT_{r}= \int_0^1\frac{1}{x-1}\sum_{r=1}^n(-1)^{r-1} \left(x^r\right){n\choose r}-(-1)^{r-1}{n\choose r}

r = 1 n T r = 0 1 1 x 1 r = 1 n ( 1 ) r 1 ( x r ) ( n r ) + ( 1 ) r ( n r ) \Rightarrow \sum_{r=1}^nT_{r}= \int_0^1\frac{1}{x-1}\sum_{r=1}^n(-1)^{r-1} \left(x^r\right){n\choose r}+(-1)^{r}{n\choose r}

r = 1 n T r = 0 1 1 x 1 ( r = 1 n ( 1 ) r 1 ( x r ) ( n r ) + r = 1 n ( 1 ) r ( n r ) ) \Rightarrow \sum_{r=1}^nT_{r}= \int_0^1\frac{1}{x-1}(\sum_{r=1}^n(-1)^{r-1} \left(x^r\right){n\choose r}+\sum_{r=1}^n(-1)^{r}{n\choose r})

r = 1 n T r = 0 1 1 x 1 r = 1 n ( 1 ) r 1 ( x r ) ( n r ) + 0 \Rightarrow \sum_{r=1}^nT_{r}= \int_0^1\frac{1}{x-1}\sum_{r=1}^n(-1)^{r-1} \left(x^r\right){n\choose r}+0

r = 1 n T r = 0 1 1 x 1 r = 1 n ( 1 ) ( 1 ) r ( x r ) ( n r ) \Rightarrow \sum_{r=1}^nT_{r}= \int_0^1\frac{1}{x-1}\sum_{r=1}^n(-1)(-1)^{r} \left(x^r\right){n\choose r}

r = 1 n T r = 0 1 1 x 1 r = 1 n ( 1 ) ( x ) r ( n r ) \Rightarrow \sum_{r=1}^nT_{r}= \int_0^1\frac{1}{x-1}\sum_{r=1}^n(-1) (-x)^r{n\choose r}

r = 1 n T r = 0 1 1 x 1 ( 1 ) ( 1 x ) n \Rightarrow \sum_{r=1}^nT_{r}= \int_0^1\frac{1}{x-1}(-1) (1-x)^n

r = 1 n T r = 0 1 1 1 x ( 1 x ) n \Rightarrow \sum_{r=1}^nT_{r}= \int_0^1\frac{1}{1-x} (1-x)^n

r = 1 n T r = 0 1 ( 1 x ) n 1 \Rightarrow \sum_{r=1}^nT_{r}= \int_0^1 (1-x)^{n-1}

r = 1 n T r = 1 n \Rightarrow \sum_{r=1}^nT_{r}= \frac{1}{n}

S = 1 n \Rightarrow S= \frac{1}{n}

1 S = n \Rightarrow \frac{1}{S}=n

Therefore 1 S \frac1S is an integer.

Nice solution bro! reshare it so that others also see ur method.

Gautam Sharma - 6 years ago

Log in to reply

This problem recently In our AIITS-3 . Thank god i remembered the answer to this problem ! :)

Prakhar Bindal - 5 years, 4 months ago

Thank you :D

Shubham Garg - 5 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...