Does Symmetricity Always Hold?

Algebra Level 1

If x , y , z x,y,z are positive real numbers such that x + y + z = 3 x+y+z=3 , then find the minimum value of

E = 4 y z + 9 x z + 16 x y x y z . E=\frac { 4yz+9xz+16xy }{ xyz }.


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Krishna Ar
Sep 24, 2014

Write the given expression as 4 x + 9 y + 16 z \dfrac{4}{x}+\dfrac{9}{y}+\dfrac{16}{z} .

Using Titu's Lemma/Cauchy Schwarz in Engel form- We get- Min(expression)= ( 2 + 3 + 4 ) 2 x + y + z \dfrac{(2+3+4)^{2}}{x+y+z} . We know that x + y + z = 3 x+y+z=3 thus answer = 81 3 = 27 \dfrac{81}{3}=27 . I think this is the easiest possible way. Kindly upvote if you liked this :)

For those who dont know Titu Lemma it is nothing but- i = 1 n a i 2 b i = ( a 1 2 ) b 1 + . . . . . . . . . . . + ( a n 2 ) b n ( a 1 + . . . . . . . . . . . . + a n ) 2 b 1 + . . . . . . . . . . . + b n \displaystyle \sum_{i=1}^n \dfrac{a_i^2}{b_i} =\dfrac{(a_{1}^{2})}{b_{1}}+...........+\dfrac{(a_{n}^{2})}{b_{n}} \geq \dfrac{(a_{1}+............+a_{n})^{2}}{b_{1}+...........+b_{n}}


Or, the Cauchy Schwarz Engel form, which is , for sets ( a 1 , a 2 , . . . , a n ) (a_1,a_2,...,a_n) and ( b 1 , b 2 , . . . , b n ) (b_1,b_2,...,b_n) , we have a i b i 2 ( a i 2 ) ( b i 2 ) \displaystyle \left| \sum a_ib_i \right| ^2 \leq \biggl( \sum a_i^2 \biggr) \biggl( \sum b_i^2 \biggr)

No offence meant to problem setter , but how is this level 5 ? Its a direct application of Titu's lemma.

Arif Ahmed - 6 years, 8 months ago

You haven't yet proven that the solution is achievable.Proving it is trivial but adding it will definitely complete the answer.

Rahul Saha - 6 years, 8 months ago

Log in to reply

We simply make the substitution a i a i b i b i b i a_i\to \dfrac{a_i}{\sqrt{b_i}}~\land~b_i\to \sqrt{b_i} for positive reals b i b_i and non-negative reals a i a_i in the general form of Cauchy-Schwarz inequality and then simply it to obtain the Titu's lemma.

I hope I'm correct. :)

Prasun Biswas - 6 years, 5 months ago

can you please correct latex in last section of you solution...thanx

Deepanshu Gupta - 6 years, 8 months ago

Log in to reply

done..............

Krishna Ar - 6 years, 8 months ago

Log in to reply

ohh......!! Now I understand your solution....Interesting and nice solution

Deepanshu Gupta - 6 years, 8 months ago

should say equality at $(x, y, z) = (\frac{2}{3}, \frac{3}{3}, \frac{4}{3})$ for completeness

Albert Wang - 1 year, 5 months ago
Deepanshu Gupta
Sep 23, 2014

\E = 4 y z + 9 x z + 16 x y x y z = 4 x + 9 y + 16 z N o w u s i n g F a m o u s i n e q u a l i t y F o r p o s i t i v e v a r i a b l e s M e t h o d 1 : A M H M x 2 + x 2 + y 3 + y 3 + y 3 + z 4 + z 4 + z 4 + z 4 9 9 2 x + 2 x + 3 y + 3 y + 3 y + 4 y + 4 z + 4 z + 4 z x + y + z 81 E E 27 E m i n = 27 M e t h o d 2 : U s i n g A M G M E × ( 3 ) = E × ( x + y + z ) = ( 4 + 9 + 16 ) + ( 4 y x + 9 x y ) + ( 9 z y + 16 y z ) + ( 4 z x + 16 x z ) 81 E 27 \displaystyle\E=\frac { 4yz+9xz+16xy }{ xyz } =\frac { 4 }{ x } +\frac { 9 }{ y } +\frac { 16 }{ z } \\ \\ Now\quad using\quad Famous\quad inequality\quad For\quad positive\quad variables\quad \\ Method-1:\quad AM\quad \ge \quad HM\\ \Longrightarrow \frac { \frac { x }{ 2 } +\frac { x }{ 2 } +\frac { y }{ 3 } +\frac { y }{ 3 } +\frac { y }{ 3 } +\frac { z }{ 4 } +\frac { z }{ 4 } +\frac { z }{ 4 } +\frac { z }{ 4 } }{ 9 } \quad \ge \quad \frac { 9 }{ \frac { 2 }{ x } +\frac { 2 }{ x } +\frac { 3 }{ y } +\frac { 3 }{ y } +\frac { 3 }{ y } +\frac { 4 }{ y } +\frac { 4 }{ z } +\frac { 4 }{ z } +\frac { 4 }{ z } } \\ \\ \Longrightarrow x+y+z\quad \ge \quad \frac { 81 }{ E } \\ \Longrightarrow E\quad \ge \quad 27\\ { \Longrightarrow E }_{ min }=27\\ \quad \\ Method-2:\\ Using\quad AM\quad \ge \quad GM\\ \quad \Longrightarrow E\times (3)=E\times (x+y+z)=\quad (4+9+16)\quad +\quad (\frac { 4y }{ x } +\frac { 9x }{ y } )+\quad (\frac { 9z }{ y } +\frac { 16y }{ z } )+\quad (\frac { 4z }{ x } +\frac { 16x }{ z } )\quad \ge \quad 81\\ \Longrightarrow E\quad \ge \quad 27 .

Does anyone has other method...??

Me!! I have another method. :D. Use Cauchy Schwarz in Engel/Titu's form after writing it as three different expressions ' sum

Krishna Ar - 6 years, 8 months ago

Log in to reply

Can you post it as a solution please ?? (since I know a very elementary use of Cauchy)

Deepanshu Gupta - 6 years, 8 months ago

Log in to reply

Hey, I've done it, but please upvote it too :)

Krishna Ar - 6 years, 8 months ago
U Z
Oct 26, 2014

E = 2 2 x + 3 2 y + 4 2 z E = \frac{2^{2}}{x} + \frac{3^{2}}{y} + \frac{4^{2}}{z}

E = ( x + y + z ) ( 2 2 3 x + 3 2 3 y + 4 2 3 z E = ( x + y + z)( \frac{2^{2}}{\sqrt{3}x} + \frac{3^{2}}{\sqrt{3}y} + \frac{4^{2}}{\sqrt{3}z}

Now,

( a i b i ) 2 ( a i ) 2 ( b i ) 2 (\sum a_{i} b{i})^{2} \leq (\sum a_{i})^{2}(\sum b_{i})^{2}

least when it is equal to ( 2 + 3 + 4 3 ) 2 ( \frac{2 +3 + 4}{\sqrt{3}})^{2}

= 9 2 3 = 27 = \frac{9^{2}}{3} = 27

Antonio Fanari
Sep 26, 2014

E = 4 y z + 9 x z + 16 x y x y z , E = \frac {4yz+9xz+16xy}{xyz}, can be simplified in the form: { E = 4 x + 9 y + 16 z = 0 g ( x ) = x + y + z 3 = 0 ( 1 ) \begin{cases}E = \frac 4 x + \frac 9 y + \frac {16} z = 0\\g(x)=x+y+z-3=0\end{cases}\,(1) that can be minimized with Lagrange's multipliers method: F = E λ g ( x ) , λ R , F=E-{\lambda}g(x),\,\lambda \in \mathbb{R}, { F x = 0 F y = 0 F x = 0 F λ = 0 ( 2 ) \begin{cases}\frac {\partial F}{\partial x} = 0\\\frac {\partial F}{\partial y} = 0 \\\frac {\partial F}{\partial x} = 0\\\frac {\partial F}{\partial {\lambda}} = 0\end{cases}\,(2) which leads to: { λ x 2 + 4 = 0 λ y 2 + 9 = 0 λ z 2 + 16 = 0 x + y + z 3 = 0 ( 3 ) \begin{cases}{\lambda}x^2+4=0\\{\lambda}y^2+9=0\\{\lambda}z^2+16=0\\x+y+z-3=0\end{cases}\,(3) with solutions: { λ = 9 ; x = 2 3 ; y = 1 ; z = 4 3 ; λ = 25 9 ; x = 6 5 ; y = 9 5 ; z = 12 5 λ = 1 ; x = 2 ; y = 3 ; z = 4 ; λ = 1 9 ; x = 6 ; y = 9 ; z = 12 ; \begin{cases}\lambda =-9;\,x=\frac 2 3;\,y=1;\,z=\frac 4 3;\\\lambda =-\frac {25} 9;\,x=-\frac 6 5;\,y=\frac 9 5;\,z=\frac {12} 5\\\lambda =-1;\,x=2;\,y=-3;\,z=4;\\\lambda =-\frac 1 9;\,x=6;\,y=9;\,z=-12;\end{cases} only the first solution with x , y , z , x,\,y,\,z,\, positives is acceptable and leads to: E m i n = 27 E_{min}=\boxed {27}

Brilliant! Would have never thought of using Lagrange here. Great variety, keep up the good work guys!

Pratyush Pandey - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...