Is calculus 'ringing'?

Calculus Level 4

If the least area of a ring with variable internal radius R R and thickness 1 R \dfrac 1R is A A , then find

n = 1 ( 1 ) n ( A 4 ) 2 n ( 2 n ) ! . \sum_{n=1}^\infty (-1)^n \frac{\left(\frac A4\right)^{2n}}{(2n)!} .


Notation: ! ! is the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The area of the ring is given by:

A R = ( ( R + 1 R ) 2 R 2 ) π = ( R 2 + 2 + 1 R 2 R 2 ) π = ( 2 + 1 R 2 ) π \begin{aligned} A_R & = \left(\left(R+\frac 1R\right)^2 - R^2\right)\pi \\ & = \left(R^2+2+\frac 1{R^2} - R^2\right) \pi \\ & = \left(2+\frac 1{R^2} \right) \pi \end{aligned}

We note that A R A_R is minimum when R R \to \infty ; that is A = lim R ( 2 + 1 R 2 ) π = 2 π A = \displaystyle \lim_{R \to \infty} \left(2+\frac 1{R^2} \right) \pi = 2\pi .

Now we have:

S = n = 1 ( 1 ) n ( 2 n ) ! ( A 4 ) 2 n = n = 1 ( 1 ) n ( 2 n ) ! ( π 2 ) 2 n = n = 0 ( 1 ) n ( 2 n ) ! ( π 2 ) 2 n 1 Note that cos x = n = 0 ( 1 ) n ( 2 n ) ! x 2 n = cos π 2 1 = 0 1 = 1 \begin{aligned} S & = \sum_{n=1}^\infty \frac {(-1)^n}{(2n)!}\left(\frac A4 \right)^{2n} \\ & = \sum_{\color{#3D99F6}n=1}^\infty \frac {(-1)^n}{(2n)!}\left(\frac \pi 2 \right)^{2n} \\ & = \sum_{\color{#D61F06}n=0}^\infty \frac {(-1)^n}{(2n)!}\left(\frac \pi 2 \right)^{2n} \color{#D61F06}-1 & \small \color{#3D99F6} \text{Note that } \cos x = \sum_{n=0}^\infty \frac {(-1)^n}{(2n)!}x^{2n} \\ & = \cos \frac \pi 2 - 1 \\ & = 0 - 1 \\ & = \boxed{-1} \end{aligned}

Nice solution

Sudhamsh Suraj - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...