Is divisible by 12?

Is divisible by 12? \text{Is divisible by 12?}

( c d ) . ( d a ) . ( a c ) . ( d b ) . ( b a ) . ( c b ) \large (c-d).(d-a).(a-c).(d-b).(b-a).(c-b) a , b , c , d Z \forall a, b, c, d \in \mathbb{Z}

No Yes

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Cleres Cupertino
Aug 5, 2015

Any integer number has one of the following expressions:

3 k 1 3k-1 , 3 k 3k or 3 k + 1 3k+1 k Z \quad k \in \mathbb{Z} .

In a first approach, let´s assume that:

a = 3 k a 1 a=3k_a-1 , b = 3 k b b=3k_b and c = 3 k c + 1 c=3k_c+1 , k a , k b , k c Z \quad k_a, k_b, k_c \in \mathbb{Z} .

So, d d must have one of that expressions:

d = 3 k d 1 d=3k_d-1 or d = 3 k d d=3k_d or d = 3 k d + 1 d=3k_d+1 , k d Z \quad k_d \in \mathbb{Z} .

Then, one of ( a d ) (a-d) , ( b d ) (b-d) or ( c d ) (c-d) , will have the expression:

3 ( k i k d ) i { a , b , c } \ 3(k_i-k_d) \quad i \in \{a, b, c\}

By the exposed, two of them, a a , b b , c c or d d , will be such that,

i j = 3 ( k i k j ) i , j { a , b , c , d } i j i-j=3(k_i-k_j) \quad i,j \in \{a,b,c,d\} \quad i\neq j

By other hand, any integer number is even or odd. So, three of them, or two pairs of them, a a , b b , c c or d d , will be such that two differences will have the expression:

i j = 2 ( K i K j ) i , j { a , b , c , d } i j K i , K j Z i-j=2(K_i-K_j) \quad i,j \in \{a,b,c,d\} \quad i\neq j \quad K_i,K_j \in \mathbb{Z}

Then,

i , j { a , b , c , d } i j ( i j ) = 2.2.3 r e s i d u a l { i j k i k j K i K j } \Large \overline{\prod_{i,j \in \{a,b,c,d\}}^{i \neq j}{(i-j)}}=2.2.3 \prod{\small residual\left\{{i-j}|{k_i-k_j}|{K_i-K_j}\right\}}

\quad

Note:

( i j ) \small \overline{\prod{(i-j)}} defines a product such that if ( i j ) (i-j) is a factor, ( j i ) (j-i) is not.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...