Is everything clear about integrals of sines and cosines?

Calculus Level 4

sin 2 x cos 2 x ( sin 3 x + cos 3 x ) 2 d x \large \int \dfrac{\sin^2x \cos^2x }{(\sin^3x+\cos^3x)^2} \, dx

The indefinite integral above is equal to

1 3 cos 3 x ( A cos x + B sin x ) ( 1 sin x cos x ) + C -\dfrac{1}{3}\frac{\cos^3 x}{(A\cos x+B\sin x)(1-\sin x \cos x)}+C

for constants A A and B B , where C C denotes the arbitrary constant of integration. Find the value of A + B A+B .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arturo Presa
Dec 8, 2015

Dividing the numerator and the denominator of sin 2 x cos 2 x ( cos 3 x + sin 3 x ) 2 \frac{\sin^2x\cos^2 x}{(\cos^3x+\sin^3x)^2} by cos 6 x , \cos^6x, we obtain the expression tan 2 x sec 2 x ( 1 + tan 3 x ) 2 . \frac{\tan^2x\sec^2x}{(1+\tan^3x)^2}.

Then I = sin 2 x cos 2 x ( sin 3 x + cos 3 x ) 2 d x = tan 2 x sec 2 x ( 1 + tan 3 x ) 2 d x = 1 3 d tan 3 x ( 1 + tan 3 x ) 2 = 1 3 ( 1 + tan 3 x ) + C . I=\int\frac{\sin^2x\cos^2 x}{(\sin ^3x+\cos^3x)^2}dx=\int\frac{\tan^2x\sec^2x}{(1+\tan^3x)^2}dx=\frac{1}{3}\int\frac{d\tan^3x}{(1+\tan^3x)^2}=-\frac{1}{3(1+\tan^3x)}+C. Multiplying the last fraction by cos 3 x cos 3 x , \frac{\cos^3x}{\cos^3x}, we get that I = 1 3 cos 3 x cos 3 x + sin 3 x + C . I=-\frac{1}{3}\frac{\cos^3x}{\cos^3x+\sin^3x}+C. Factoring the denominator and using the identity sin 2 x + cos 2 x = 1 \sin^2 x+\cos^2x=1 we get that I = 1 3 cos 3 x ( cos x + sin x ) ( cos 2 x sin x cos x + sin 2 x ) + C = 1 3 cos 3 x ( cos x + sin x ) ( 1 sin x cos x ) + C . I=-\frac{1}{3}\frac{\cos^3x}{(\cos x+\sin x)(\cos^2x-\sin x\cos x+\sin^2 x)}+C=-\frac{1}{3}\frac{\cos^3x}{(\cos x+\sin x)(1-\sin x\cos x)}+C. Therefore, A = B = 1. A=B=1. So the answer is A + B = 2 . \boxed{A+B=2}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...