Is Henri right about this?

Geometry Level 3

Henri makes the following statement:

\exists no θ R \theta \in \mathbb{R} such that b sin ( π 2 θ ) b 2 a 2 \left|b\cdot\sin{\left(\dfrac{\pi}{2}-\theta\right)}\right| \neq \sqrt{b^2-a^2} when sin θ = a b . \sin{\theta} = \dfrac{a}{b}.

Is Henri correct?

No Yes Cannot be determined

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akeel Howell
Feb 2, 2017

Assume that sin ( π 2 θ ) b 2 a 2 b . \sin{\left(\dfrac{\pi}{2}-\theta\right)} \neq \dfrac{\sqrt{b^2-a^2}}{b}.

sin ( π 2 θ ) = cos θ . \sin{\left(\dfrac{\pi}{2}-\theta\right)} = \cos{\theta}.

sin 2 θ + cos 2 θ = 1 cos 2 θ = 1 sin 2 θ = 1 a 2 b 2 . \sin^2{\theta}+\cos^2{\theta} = 1 \implies \cos^2{\theta} = 1 - \sin^2{\theta} = 1- \dfrac{a^2}{b^2}.

So cos θ = b 2 b 2 a 2 b 2 = b 2 a 2 b 2 {|\cos{\theta}}| = \sqrt{\dfrac{b^2}{b^2}-\dfrac{a^2}{b^2}} = \sqrt{\dfrac{b^2-a^2}{b^2}}

cos θ = b 2 a 2 b b cos θ = b 2 a 2 . \therefore |\cos{\theta}| = \dfrac{\sqrt{b^2-a^2}}{b}\\ \implies \left|b\cdot\cos{\theta}\right| = \sqrt{b^2-a^2}.

So Henri was correct.

Note that cos 2 θ = cos θ \sqrt{\cos^2\theta} = |\cos\theta| , not necessarily simply cos θ \cos\theta .

Brian Moehring - 4 years, 4 months ago

Log in to reply

updated the solution.

Akeel Howell - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...