S = 0 . 1 + 0 . 0 4 + 0 . 0 0 9 + 0 . 0 0 1 6 + ⋯ S represents an arithmetic-geometric progression .
If S can be represented in the form b a , where a and b are coprime positive integers, find a + b
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Good explanation!
Because all of the terms are positive, we can rearrange them arbitrarily without being concerned about convergence issues.
this is a very good pure algebraic great!
S = 0 . 1 + 2 2 ( 0 . 1 ) 2 + 3 2 ( 0 . 1 ) 3 + . . . ∞
Let x = 0 . 1 , then:
S = x + 2 2 x 2 + 3 2 x 3 + . . . ∞
S = x + ( 2 x 2 + 2 x 2 ) + ( 3 x 3 + 3 x 3 + 3 x 3 ) + . . . ∞
S = ( x + 2 x 2 + 3 x 3 + . . . ∞ ) + ( 2 x 2 + 3 x 3 + 4 x 4 + . . . ∞ ) + ( 3 x 3 + 4 x 4 + 5 x 5 + . . . ∞ ) + . . . ∞
S = ( 2 x − x + 3 x 2 − x 2 + 4 x 3 − x 3 + . . . ∞ ) + ( 3 x 2 − x 2 + 4 x 3 − x 3 + . . . ∞ ) + ( 4 x 3 − x 3 + 5 x 4 − x 4 + 6 x 5 − x 5 + . . . ∞ ) + . . . ∞
= [ d x d ( x 2 + x 3 + . . . ∞ ) ] − ( x + x 2 + x 3 + . . . ∞ ) + [ d x d ( x 3 + x 4 + . . . ∞ ) ] − ( x 2 + x 3 + x 4 + . . . ∞ ) + [ d x d ( x 4 + x 5 + . . . ∞ ) ] − ( x 3 + x 4 + x 5 + . . . ∞ ) + . . . ∞
Since ∣ x ∣ < 1 , we can use the formula of infinite geometric progression sum:
= [ d x d ( 1 − x x 2 + x 3 + x 4 + . . . ) ] − 1 − x x + x 2 + x 3 + . . .
= [ d x d ( ( 1 − x ) 2 x 2 ) ] − ( 1 − x ) 2 x
= ( 1 − x ) 3 x ( 1 + x ) = ( 1 − 0 . 1 ) 3 0 . 1 ( 1 + 0 . 1 ) = 7 2 9 1 1 0
We can also suitably manipulate the series to obtain an AGP progression
Problem Loading...
Note Loading...
Set Loading...
S = 0 . 1 + 0 . 0 4 + 0 . 0 0 9 + 0 . 0 0 1 6 + . . . = n = 1 ∑ ∞ 1 0 n n 2
Note that n = 1 ∑ ∞ 1 0 n n 2 = n = 0 ∑ ∞ 1 0 n n 2 . So we have:
S ⟹ 1 0 9 S ⟹ S = n = 1 ∑ ∞ 1 0 n n 2 = n = 0 ∑ ∞ 1 0 n + 1 ( n + 1 ) 2 = n = 0 ∑ ∞ 1 0 n + 1 n 2 + 2 n + 1 = 1 0 1 n = 0 ∑ ∞ 1 0 n n 2 + 5 1 n = 0 ∑ ∞ 1 0 n n + 1 0 1 n = 0 ∑ ∞ 1 0 n 1 = 1 0 1 S + 5 1 ( 8 1 1 0 ) + 1 0 1 ( 1 − 1 0 1 1 ) = 8 1 2 + 9 1 = 8 1 1 1 = 7 2 9 1 1 0 see Note
⟹ a + b = 1 1 0 + 7 2 9 = 8 3 9
Note:
Using the similar method:
S 1 ⟹ 1 0 9 S ⟹ S = n = 0 ∑ ∞ 1 0 n n = n = 1 ∑ ∞ 1 0 n n = n = 0 ∑ ∞ 1 0 n + 1 n + 1 = 1 0 1 n = 0 ∑ ∞ 1 0 n n + 1 0 1 n = 0 ∑ ∞ 1 0 n 1 = 1 0 1 S 1 + 1 0 1 ( 1 − 1 0 1 1 ) = 9 1 = 8 1 1 0