Is It A Converging Series?

Algebra Level 4

S = 0.1 + 0.04 + 0.009 + 0.0016 + S=0.1+0.04+0.009+0.0016+\cdots S S represents an arithmetic-geometric progression .

If S S can be represented in the form a b \dfrac{a}{b} , where a a and b b are coprime positive integers, find a + b a+b


The answer is 839.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 22, 2016

S = 0.1 + 0.04 + 0.009 + 0.0016 + . . . = n = 1 n 2 1 0 n \begin{aligned} S & = 0.1+0.04+0.009+0.0016+... = \sum_{n=1}^\infty \frac {n^2}{10^n} \end{aligned}

Note that n = 1 n 2 1 0 n = n = 0 n 2 1 0 n \displaystyle \sum_{n=1}^\infty \frac {n^2}{10^n} = \sum_{n=\color{#D61F06}{0}}^\infty \frac {n^2}{10^n} . So we have:

S = n = 1 n 2 1 0 n = n = 0 ( n + 1 ) 2 1 0 n + 1 = n = 0 n 2 + 2 n + 1 1 0 n + 1 = 1 10 n = 0 n 2 1 0 n + 1 5 n = 0 n 1 0 n + 1 10 n = 0 1 1 0 n see Note = 1 10 S + 1 5 ( 10 81 ) + 1 10 ( 1 1 1 10 ) 9 10 S = 2 81 + 1 9 = 11 81 S = 110 729 \begin{aligned} S & = \sum_{n=1}^\infty \frac {n^2}{10^n} \\ & = \sum_{n=\color{#D61F06}{0}}^\infty \frac {({\color{#D61F06}n+1})^2}{10^{\color{#D61F06}{n+1}}} \\ & = \sum_{n=\color{#D61F06}{0}}^\infty \frac {n^2+2n+1}{10^{n+1}} \\ & = \frac 1{10} \sum_{n=0}^\infty \frac {n^2}{10^n} + \frac 15 {\color{#3D99F6}\sum_{n=0}^\infty \frac {n}{10^n}} + \frac 1{10} \sum_{n=0}^\infty \frac 1{10^n} & \small {\color{#3D99F6} \text{see Note}} \\ & = \frac 1{10} S + \frac 15 {\color{#3D99F6}\left(\frac {10}{81}\right)} + \frac 1{10} \left(\frac 1{1-\frac 1{10}} \right) \\ \implies \frac 9{10} S & = \frac 2{81} + \frac 19 = \frac {11}{81} \\ \implies S & = \frac {110}{729} \end{aligned}

a + b = 110 + 729 = 839 \implies a+b = 110+729 = \boxed{839}


Note:

Using the similar method:

S 1 = n = 0 n 1 0 n = n = 1 n 1 0 n = n = 0 n + 1 1 0 n + 1 = 1 10 n = 0 n 1 0 n + 1 10 n = 0 1 1 0 n = 1 10 S 1 + 1 10 ( 1 1 1 10 ) 9 10 S = 1 9 S = 10 81 \begin{aligned} S_1 & = \sum_{n=0}^\infty \frac {n}{10^n} \\ & = \sum_{n=\color{#D61F06}{1}}^\infty \frac {n}{10^n} \\ & = \sum_{n=\color{#3D99F6}{0}}^\infty \frac {\color{#3D99F6}{n+1}}{10^{\color{#3D99F6}{n+1}}} \\ & = \frac 1{10} \sum_{n=0}^\infty \frac {n}{10^n} + \frac 1{10} \sum_{n=0}^\infty \frac 1{10^n} \\ & = \frac 1{10} S_1 + \frac 1{10} \left(\frac 1{1-\frac 1{10}} \right) \\ \implies \frac 9{10} S & = \frac 19 \\ \implies S & = \frac {10}{81} \end{aligned}

Good explanation!

Because all of the terms are positive, we can rearrange them arbitrarily without being concerned about convergence issues.

Calvin Lin Staff - 4 years, 7 months ago

this is a very good pure algebraic great!

A Former Brilliant Member - 4 years, 7 months ago

S = 0.1 + 2 2 ( 0.1 ) 2 + 3 2 ( 0.1 ) 3 + . . . S=0.1+2^2(0.1)^2+3^2(0.1)^3+... \infty

Let x = 0.1 x=0.1 , then:

S = x + 2 2 x 2 + 3 2 x 3 + . . . S=x+2^2x^2+3^2x^3+... \infty

S = x + ( 2 x 2 + 2 x 2 ) + ( 3 x 3 + 3 x 3 + 3 x 3 ) + . . . S=x + (2x^2 + 2x^2) + (3x^3 + 3x^3 + 3x^3) + ... \infty

S = ( x + 2 x 2 + 3 x 3 + . . . ) + ( 2 x 2 + 3 x 3 + 4 x 4 + . . . ) + ( 3 x 3 + 4 x 4 + 5 x 5 + . . . ) + . . . S=(x+2x^2+3x^3+...\infty)+(2x^2+3x^3+4x^4+...\infty)+(3x^3+4x^4+5x^5+...\infty)+...\infty

S = ( 2 x x + 3 x 2 x 2 + 4 x 3 x 3 + . . . ) + ( 3 x 2 x 2 + 4 x 3 x 3 + . . . ) + ( 4 x 3 x 3 + 5 x 4 x 4 + 6 x 5 x 5 + . . . ) + . . . S=(2x-x+3x^2-x^2+4x^3-x^3+...\infty)+(3x^2-x^2+4x^3-x^3+...\infty)+(4x^3-x^3+5x^4-x^4+6x^5-x^5+...\infty)+...\infty

= [ d d x ( x 2 + x 3 + . . . ) ] ( x + x 2 + x 3 + . . . ) + [ d d x ( x 3 + x 4 + . . . ) ] ( x 2 + x 3 + x 4 + . . . ) + [ d d x ( x 4 + x 5 + . . . ) ] ( x 3 + x 4 + x 5 + . . . ) + . . . =\left[\frac{d}{dx}\left(x^2+x^3+...\infty \right)\right]-\left(x+x^2+x^3+...\infty \right) + \left[\frac{d}{dx}\left(x^3+x^4+...\infty \right)\right]-\left(x^2+x^3+x^4+...\infty \right) + \left[\frac{d}{dx}\left(x^4+x^5+...\infty \right)\right]-\left(x^3+x^4+x^5+...\infty\right)+...\infty

Since x < 1 |x|<1 , we can use the formula of infinite geometric progression sum:

= [ d d x ( x 2 + x 3 + x 4 + . . . 1 x ) ] x + x 2 + x 3 + . . . 1 x =\left[\frac{d}{dx}\left(\frac{x^2+x^3+x^4+...}{1-x}\right)\right]-\frac{x+x^2+x^3+...}{1-x}

= [ d d x ( x 2 ( 1 x ) 2 ) ] x ( 1 x ) 2 =\left[\frac{d}{dx}\left(\frac{x^2}{\left(1-x\right)^2}\right)\right]-\frac{x}{\left(1-x\right)^2}

= x ( 1 + x ) ( 1 x ) 3 = 0.1 ( 1 + 0.1 ) ( 1 0.1 ) 3 = 110 729 =\frac{x(1+x)}{(1-x)^3} = \frac{0.1(1+0.1)}{(1-0.1)^3}=\boxed{\frac{110}{729}}

We can also suitably manipulate the series to obtain an AGP progression

Indraneel Mukhopadhyaya - 4 years, 7 months ago

Log in to reply

could you explain how

A Former Brilliant Member - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...