Is it really a GP?

Algebra Level 3

3 13 + 33 1 3 2 + 333 1 3 3 + 3333 1 3 4 + = ? \large \frac{3}{13}+\frac{33}{13^2}+\frac{333}{13^3}+\frac{3333}{13^4}+\cdots = \, ?

13 12 \frac {13}{12} 12 13 \frac {12}{13} 11 12 \frac {11}{12} 11 13 \frac {11}{13}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Dec 20, 2016

S = 3 13 + 33 1 3 2 + 333 1 3 3 + 3333 1 3 4 + = 9 3 13 + 99 3 1 3 2 + 999 3 1 3 3 + 9999 3 1 3 4 + = 10 1 3 13 + 100 1 3 1 3 2 + 1000 1 3 1 3 3 + 10000 1 3 1 3 4 + = n = 1 1 0 n 1 3 1 3 n = 1 3 n = 1 [ ( 10 13 ) n 1 1 3 n ] = 1 3 [ 10 13 1 10 13 1 13 1 1 13 ] = 1 3 [ 10 3 1 12 ] = 13 12 \begin{aligned} S & = \frac 3{13} + \frac {33}{13^2} + \frac {333}{13^3} + \frac {3333}{13^4} + \cdots \\ & = \frac 9{3 \cdot 13} + \frac {99}{3 \cdot 13^2} + \frac {999}{3 \cdot 13^3} + \frac {9999}{3 \cdot 13^4} + \cdots \\ & = \frac {10-1}{3 \cdot 13} + \frac {100-1}{3 \cdot 13^2} + \frac {1000-1}{3 \cdot 13^3} + \frac {10000-1}{3 \cdot 13^4} + \cdots \\ & = \sum_{n=1}^\infty \frac {10^n-1}{3 \cdot 13^n} \\ & = \frac 13 \sum_{n=1}^\infty \left[ \left(\frac {10}{13}\right)^n - \frac 1{13^n} \right] \\ & = \frac 13 \left[ \frac {\frac {10}{13}}{1-\frac {10}{13}} - \frac {\frac 1{13}}{1-\frac 1{13}} \right] \\ & = \frac 13 \left[ \frac {10}3 - \frac 1{12} \right] \\ & = \boxed{\dfrac {13}{12}} \end{aligned}

It turns out to be a GP - GP!

Calvin Lin Staff - 4 years, 5 months ago
Yuval Kurin
Dec 23, 2016

S = 3 13 + 33 1 3 2 + 333 1 3 3 + 3333 1 3 4 + S=\frac{3}{13}+\frac{33}{13^2}+\frac{333}{13^3}+\frac{3333}{13^4}+\ldots

S 13 = 3 1 3 2 + 33 1 3 3 + 333 1 3 4 + \frac{S}{13}=\frac{3}{13^2}+\frac{33}{13^3}+\frac{333}{13^4}+\ldots

S S 13 = 3 13 + 30 1 3 2 + 300 1 3 3 + 3000 1 3 4 S-\frac{S}{13}=\frac{3}{13}+\frac{30}{13^2}+\frac{300}{13^3}+\frac{3000}{13^4}

= 3 13 1 10 13 = 1 =\frac{\frac{3}{13}}{1-\frac{10}{13}}=1

S S 13 = 12 S 13 = 1 S-\frac{S}{13}=\frac{12S}{13}=1

S = 13 12 \boxed{S=\frac{13}{12}}

You know that way was told by my teacher before

ankit raj - 4 years, 5 months ago

I did it with exactly same method

Lakshay Rana - 4 years, 2 months ago

a beautiful and tricky problem. completely baffled me.....

Dipto Biswas - 4 years, 5 months ago
Ankit Raj
Dec 20, 2016

See the denominator is a G.P. but what is upper one just increase digit. - = 3 13 \frac{3}{13} + 33 1 3 2 \frac{33}{13^2} + 333 1 3 3 \frac{333}{13^3} . . . . ∞

  • =3( 1 13 \frac{1}{13} + 11 1 3 2 \frac{11}{13^2} + 111 1 3 3 \frac{111}{13^3} . . . . .∞)

  • = 3 9 \frac{3}{9} ( 9 13 \frac{9}{13} + 99 1 3 2 \frac{99}{13^2} + 999 1 3 3 \frac{999}{13^3} . . . . . ∞)

  • = 3 9 \frac{3}{9} ( 10 1 13 \frac{10-1}{13} + 100 1 1 3 2 \frac{100-1}{13^2} + 1000 1 1 3 3 \frac{1000-1}{13^3} . . . . . ∞)

  • = 3 9 \frac{3}{9} [( 10 13 \frac{10}{13} + 100 1 3 2 \frac{100}{13^2} + 1000 1 3 3 \frac{1000}{13^3} ). . . . . ∞( 3 9 \frac{3}{9} ( 1 13 \frac{-1}{13} + 1 1 3 2 \frac{-1}{13^2} + 1 1 3 3 \frac{-1}{13^3} . . . . . ∞)]

  • = 3 9 \frac{3}{9} [( 10 \1 3 1 10 / 13 \frac{10\13}{1-10/13} ) + ( 1 / 13 1 1 / 13 \frac{-1/13}{1-1/13} )]

  • = 1 3 \frac{1}{3} [ 10 3 \frac{10}{3} + 1 12 \frac{-1}{12} ]

  • = 1 3 \frac{1}{3} 39 12 \frac{39}{12}

  • = 13 / 12 \boxed{13/12}

you messed up the latex a bit

Riyad Mahmud - 4 years, 4 months ago

Bhai baat to same hi hain ...............................

GOOD...........GOOD.........I also did it in same way. QUITE AN EASY QUESTION

anshu garg - 4 years, 5 months ago

Main vineet mera method better h anshu and ankit u r both mad

Lakshay Rana - 4 years, 2 months ago

Log in to reply

apna apne pas rakh

anshu garg - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...