∫ 0 1 ( 1 + x ) x − 1 ln x d x
The integral above can be expressed as ln ( b a ) , where a and b are real numbers with b being a prime. Find the value of a b .
The same posting is also done here .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Note that ∫ 0 1 x y d y = ln x x − 1 using this result our integral becomes I = ∫ 0 1 ( x + 1 ) ln x x − 1 = ∫ 0 1 ( x + 1 1 ∫ 0 1 x y d y ) d x = ∫ 0 1 ∫ 0 1 1 + x x y d y d x = ∫ 0 1 I 1 ∫ 0 1 1 + x x y d x d y Since the integral I 1 = ∫ 0 1 1 + x x y d x = 2 1 ( H 2 y − H 2 y − 1 ) = 2 1 ( ψ 0 ( 2 2 y + 1 ) − ψ 0 ( 2 y + 1 ) ) is well know result which I have proved here by polynomial long division. Integrating I 1 we yield I = ∫ 0 1 I 1 d y = [ ln Γ ( 2 y + 2 ) − ln Γ ( 2 y + 1 ) ] 0 1 = ln ( Γ ( 2 3 ) Γ ( 2 1 ) ) = ln ( 2 π π ) ⋯ ( 1 ) = ln ( 2 π ) we use the half gamma Γ ( 2 1 + n ) = 4 n n ! ( 2 n ) ! π argument in ( 1 ) or using functional equation of gamma function we can write ( 1 ) as = ln ( 2 1 Γ 2 ( 2 1 ) ) = ln ( 2 π )
Alternatively I 1 = ∫ 0 1 1 + x x y d x = ∫ 0 1 x y ( r = 0 ∑ ∞ ( − 1 ) r x r ) d x = r = 0 ∑ ∞ y + r + 1 ( − 1 ) r = Φ ( − 1 , 1 , y + 1 ) ⋯ ( 3 ) where Φ ( z , s , α ) is Lerch Transcendent function using the equation 5 and 6 we obtain I = 2 1 ( ψ 0 ( 2 2 y + 1 ) − ψ 0 ( 2 y + 1 ) ) To prove tha relationship between $ (3)$ and final result we can directly use series formula of digamma function.
The above integral can be related as
∫ 0 ∞ e 2 x t a n h x x d x = ∫ 0 1 ( 1 + x ) ln x x − 1 d x = − ln ( π 2 )
Sharing some of my work much related to this problem here
Nice approaches!! You can also use Feynman's technique and then Wallis Product gives the answer. That's how I did it
Log in to reply
Yes the way you solve is classical technique that you are saying and can be found in MSE( in fact this is particular case of classical general result).I share some of my works you may wish to solve them.
Problem Loading...
Note Loading...
Set Loading...
The substitution x = e − y gives I = ∫ 0 1 ( x + 1 ) ln x x − 1 d x = ∫ 0 ∞ ( 1 + e − y ) y ( 1 − e − y ) e − y d y = F ( 1 ) where F ( u ) = ∫ 0 ∞ ( 1 + e − y ) y ( 1 − e − y ) e − u y d y u > 0 The Monotone Convergence Theorem shows that lim u → ∞ F ( u ) = 0 , and we can differentiate under the integral sign to obtain F ′ ( u ) = − ∫ 0 ∞ 1 + e − y ( 1 − e − y ) e − u y d y = − ∫ 0 ∞ ( 1 − e − y ) e − u y ( n = 0 ∑ ∞ ( − 1 ) n e − n y ) d y = − n = 0 ∑ ∞ ( − 1 ) n ∫ 0 ∞ ( 1 − e − y ) e − ( u + n ) y d y = − n = 0 ∑ ∞ ( u + n ) ( u + n + 1 ) ( − 1 ) n where the interchange of integration and summation is justified by the Dominated Convergence Theorem. Thus, applying the Dominated Convergence Theorem again, I − F ( u ) = F ( 1 ) − F ( u ) = ∫ 1 u n = 0 ∑ ∞ ( v + n ) ( v + n + 1 ) ( − 1 ) n d v = n = 0 ∑ ∞ ( − 1 ) n ∫ 1 u ( v + n ) ( v + n + 1 ) d v = n = 0 ∑ ∞ ( − 1 ) n [ ln ( v + n + 1 v + n ) ] 1 u = n = 0 ∑ ∞ ( − 1 ) n ln ( u + n + 1 u + n n + 1 n + 2 ) = n = 0 ∑ ∞ ln ( 2 n + u + 1 2 n + u 2 n + 1 2 ( n + 1 ) 2 n + u + 1 2 n + u + 2 2 n + 3 2 ( n + 1 ) ) = n = 0 ∑ ∞ ln ( 4 ( n + 1 ) 2 − 1 4 ( n + 1 ) 2 ( 2 n + u + 1 ) 2 ( 2 n + u + 1 ) 2 − 1 ) = n = 0 ∑ ∞ ln ( 1 − 4 ( n + 1 ) 2 1 1 − ( 2 n + u + 1 ) 2 1 ) = ln ( n = 1 ∏ ∞ ( 1 − 4 n 2 1 ) − 1 ) + ln ( n = 0 ∏ ∞ ( 1 − ( 2 n + u + 1 ) 2 1 ) ) = ln ( 2 π ) + ln ( u Γ ( 2 u ) 2 2 Γ ( 2 u + 1 ) 2 ) and Stirling's approximation for the Gamma function tells us that this ratio of Gamma functions tends to 1 as u → ∞ , so we deduce that I = ln ( 2 π ) making the answer 2 π .