Is it a kind of double integral??

Calculus Level 4

0 1 x 1 ( 1 + x ) d x ln x \int_0^1\frac{x-1}{(1+x)}\frac{dx}{\ln x}

The integral above can be expressed as ln ( a b ) \ln\left(\frac{a}{b}\right) , where a a and b b are real numbers with b b being a prime. Find the value of a b ab .


The same posting is also done here .


The answer is 6.2831.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jul 5, 2020

The substitution x = e y x = e^{-y} gives I = 0 1 x 1 ( x + 1 ) ln x d x = 0 ( 1 e y ) e y ( 1 + e y ) y d y = F ( 1 ) I \; =\; \int_0^1 \frac{x-1}{(x+1)\ln x}\,dx \; =\; \int_0^\infty \frac{(1-e^{-y})e^{-y}}{(1 + e^{-y})y}\,dy \; = \; F(1) where F ( u ) = 0 ( 1 e y ) e u y ( 1 + e y ) y d y u > 0 F(u) \; = \; \int_0^\infty \frac{(1 - e^{-y})e^{-uy}}{(1 + e^{-y})y}\,dy \hspace{2cm} u > 0 The Monotone Convergence Theorem shows that lim u F ( u ) = 0 \lim_{u\to\infty}F(u) =0 , and we can differentiate under the integral sign to obtain F ( u ) = 0 ( 1 e y ) e u y 1 + e y d y = 0 ( 1 e y ) e u y ( n = 0 ( 1 ) n e n y ) d y = n = 0 ( 1 ) n 0 ( 1 e y ) e ( u + n ) y d y = n = 0 ( 1 ) n ( u + n ) ( u + n + 1 ) \begin{aligned} F'(u) & = \; -\int_0^\infty \frac{(1 - e^{-y})e^{-uy}}{1 + e^{-y}}\,dy \; = \; -\int_0^\infty (1 - e^{-y})e^{-uy}\left(\sum_{n=0}^\infty (-1)^n e^{-ny}\right)\,dy \\ & = \; -\sum_{n=0}^\infty (-1)^n \int_0^\infty (1 - e^{-y})e^{-(u+n)y}\,dy \; = \; -\sum_{n=0}^\infty \frac{(-1)^n}{(u+n)(u+n+1)} \end{aligned} where the interchange of integration and summation is justified by the Dominated Convergence Theorem. Thus, applying the Dominated Convergence Theorem again, I F ( u ) = F ( 1 ) F ( u ) = 1 u n = 0 ( 1 ) n ( v + n ) ( v + n + 1 ) d v = n = 0 ( 1 ) n 1 u d v ( v + n ) ( v + n + 1 ) = n = 0 ( 1 ) n [ ln ( v + n v + n + 1 ) ] 1 u = n = 0 ( 1 ) n ln ( u + n u + n + 1 n + 2 n + 1 ) = n = 0 ln ( 2 n + u 2 n + u + 1 2 ( n + 1 ) 2 n + 1 2 n + u + 2 2 n + u + 1 2 ( n + 1 ) 2 n + 3 ) = n = 0 ln ( 4 ( n + 1 ) 2 4 ( n + 1 ) 2 1 ( 2 n + u + 1 ) 2 1 ( 2 n + u + 1 ) 2 ) = n = 0 ln ( 1 1 ( 2 n + u + 1 ) 2 1 1 4 ( n + 1 ) 2 ) = ln ( n = 1 ( 1 1 4 n 2 ) 1 ) + ln ( n = 0 ( 1 1 ( 2 n + u + 1 ) 2 ) ) = ln ( π 2 ) + ln ( 2 Γ ( u + 1 2 ) 2 u Γ ( u 2 ) 2 ) \begin{aligned} I - F(u) \; =\; F(1) - F(u) & = \; \int_1^u \sum_{n=0}^\infty \frac{(-1)^n}{(v+n)(v+n+1)}\,dv \; =\; \sum_{n=0}^\infty (-1)^n\int_1^u \frac{dv}{(v+n)(v+n+1)} \; =\; \sum_{n=0}^\infty (-1)^n \Big[\ln\left(\frac{v+n}{v+n+1}\right)\Big]_1^u \\ & = \; \sum_{n=0}^\infty (-1)^n \ln\left(\frac{u+n}{u+n+1}\,\frac{n+2}{n+1}\right) \; = \; \sum_{n=0}^\infty \ln\left(\frac{2n+u}{2n+u+1}\,\frac{2(n+1)}{2n+1}\,\frac{2n+u+2}{2n+u+1}\,\frac{2(n+1)}{2n+3}\right) \\ & = \; \sum_{n=0}^\infty \ln\left(\frac{4(n+1)^2}{4(n+1)^2 - 1}\,\frac{(2n+u+1)^2-1}{(2n+u+1)^2}\right) \; =\; \sum_{n=0}^\infty\ln\left(\frac{1 - \frac{1}{(2n+u+1)^2}}{1 - \frac{1}{4(n+1)^2}}\right) \\ & = \; \ln\left(\prod_{n=1}^\infty \left(1 - \frac{1}{4n^2}\right)^{-1}\right) + \ln\left(\prod_{n=0}^\infty \left(1 - \frac{1}{(2n+u+1)^2}\right)\right) \\ & = \; \ln\left(\tfrac{\pi}{2}\right) + \ln\left(\frac{2\Gamma(\frac{u+1}{2})^2}{u\Gamma(\frac{u}{2})^2}\right) \end{aligned} and Stirling's approximation for the Gamma function tells us that this ratio of Gamma functions tends to 1 1 as u u \to \infty , so we deduce that I = ln ( π 2 ) I \; = \; \ln\left(\tfrac{\pi}{2}\right) making the answer 2 π \boxed{2\pi} .

Naren Bhandari
Jul 5, 2020

Note that 0 1 x y d y = x 1 ln x \int_0^1 x^y dy=\frac{x-1}{\ln x} using this result our integral becomes I = 0 1 x 1 ( x + 1 ) ln x = 0 1 ( 1 x + 1 0 1 x y d y ) d x = 0 1 0 1 x y 1 + x d y d x = 0 1 0 1 x y 1 + x d x I 1 d y \begin{aligned} I &=\int_0^1\frac{x-1}{(x+1) \ln x}=\int_0^1\left(\frac{1}{x+1}\int_0^1x^ydy\right)dx \\&=\int_0^1\int_0^1\frac{x^y}{1+x}dy dx=\int_0^1\underbrace{\int_0^1\frac{x^y}{1+x}dx }_{I_1}dy \end{aligned} Since the integral I 1 = 0 1 x y 1 + x d x = 1 2 ( H y 2 H y 1 2 ) = 1 2 ( ψ 0 ( 2 y + 1 2 ) ψ 0 ( y + 1 2 ) ) I_1=\int_0^1\frac{x^y}{1+x}dx =\frac{1}{2}\left(H_{\frac{ y}{2}}-H_{\frac{y-1}{2}}\right)=\frac{1}{2}\left(\psi^0\left(\frac{2y+1}{2}\right)-\psi^0\left(\frac{y+1}{2}\right)\right) is well know result which I have proved here by polynomial long division. Integrating I 1 I_1 we yield I = 0 1 I 1 d y = [ ln Γ ( y + 2 2 ) ln Γ ( y + 1 2 ) ] 0 1 = ln ( Γ ( 3 2 ) Γ ( 1 2 ) ) = ln ( π 2 π ) ( 1 ) = ln ( π 2 ) \begin{aligned}I &= \int_0^1 I_1 dy =\left[\ln\Gamma\left(\frac{y+2}{2}\right)-\ln\Gamma\left(\frac{y+1}{2}\right)\right]_0^1\\& =\ln\left( \Gamma\left(\frac{3}{2}\right)\Gamma\left(\frac{1}{2}\right)\right)=\ln\left(\frac{\sqrt{\pi}}{2}\sqrt{\pi}\right)\cdots(1)\\&=\ln\left(\frac{\pi}{2}\right)\end{aligned} we use the half gamma Γ ( 1 2 + n ) = ( 2 n ) ! 4 n n ! π \displaystyle \Gamma\left(\frac{1}{2}+n\right)=\frac{(2n)!}{4^n n!}\sqrt{\pi} argument in ( 1 ) (1) or using functional equation of gamma function we can write ( 1 ) (1) as = ln ( 1 2 Γ 2 ( 1 2 ) ) = ln ( π 2 ) \displaystyle=\ln\left(\frac{1}{2}\Gamma^2\left(\frac{1}{2}\right)\right)=\ln\left(\frac{\pi}{2}\right)

Alternatively I 1 = 0 1 x y 1 + x d x = 0 1 x y ( r = 0 ( 1 ) r x r ) d x = r = 0 ( 1 ) r y + r + 1 = Φ ( 1 , 1 , y + 1 ) ( 3 ) \begin{aligned}I_1 & =\int_0^1\frac{x^y}{1+x}dx =\int_0^1x^y \left(\sum_{r=0}^{\infty} (-1)^r x^r\right)dx\\&=\sum_{r=0}^{\infty} \frac{(-1)^r}{y+r+1}=\Phi\left(-1,1,y+1\right)\cdots(3)\end{aligned} where Φ ( z , s , α ) \Phi(z,s,\alpha ) is Lerch Transcendent function using the equation 5 and 6 we obtain I = 1 2 ( ψ 0 ( 2 y + 1 2 ) ψ 0 ( y + 1 2 ) ) I= \frac{1}{2}\left(\psi^0\left(\frac{2y+1}{2}\right)-\psi^0\left(\frac{y+1}{2}\right)\right) To prove tha relationship between $ (3)$ and final result we can directly use series formula of digamma function.

The above integral can be related as

0 tanh x e 2 x d x x = 0 1 x 1 ( 1 + x ) ln x d x = ln ( 2 π ) \int_0^{\infty} \frac{\operatorname{tanh}x}{e^{2x}} \frac{dx}{x}=\int_0^1\frac{x-1}{(1+x)\ln x} dx=-\ln\left(\frac{2}{\pi}\right)


Sharing some of my work much related to this problem here

Nice approaches!! You can also use Feynman's technique and then Wallis Product gives the answer. That's how I did it

Aaghaz Mahajan - 11 months, 1 week ago

Log in to reply

Yes the way you solve is classical technique that you are saying and can be found in MSE( in fact this is particular case of classical general result).I share some of my works you may wish to solve them.

Naren Bhandari - 11 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...