Is it a question or a murder weapon?

Calculus Level 5

r = 1 23 exp [ 0 e ( r 24 24 ) t ( r 24 24 ) e t 1 + ( r 24 24 ) t ( e t 1 ) d t ] \Large {\prod_{r=1}^{23}} \large{ \text{exp} \left [ \displaystyle \int_0^\infty \dfrac{e^{-\left(\frac{r-24}{24} \right)t} - \left(\frac{r-24}{24} \right)e^{-t} -1 + \left(\frac{r-24}{24} \right)}{t (e^t-1)} \, dt \right ]}

If the product above equals to ( A π ) B C \displaystyle \sqrt{ \dfrac{(A\pi)^B}{C} } for positive integers A , B A,B and C C , find the value of A + B + C A+B+C .

Try more here! .


The answer is 49.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aditya Kumar
Aug 27, 2015

F i r s t w e t a k e P = l o g ( Γ ( 1 + x ) ) U s i n g t a y l o r s e r i e s o f e x p a n s i o n , P = γ x + k = 2 ( ζ ( k ) k . ( x ) k ) w h e r e γ i s E u l e r M a s c h e r o n i c o n s t a n t a n d ζ ( k ) = n = 1 1 n k N o w o n u s i n g t h e i n t e g r a l f o r m s o f γ a n d ζ ( k ) , w e g e t P = 0 ( e ( x ) t ( x ) e t 1 + ( x ) t ( e t 1 ) ) d t N o w o n s u b s t i t u t i n g x = r 24 1 , w e g e t P = 0 ( e ( r 24 24 ) t ( r 24 24 ) e t 1 + ( r 24 24 ) t ( e t 1 ) ) d t r = 1 23 ( e ( 0 ( e ( r 24 24 ) t ( r 24 24 ) e t 1 + ( r 24 24 ) t ( e t 1 ) ) d t ) ) = r = 1 23 ( e ( P ) ) = r = 1 23 ( e ( l o g ( Γ ( r 24 ) ) ) ) = r = 1 23 ( Γ ( r 24 ) ) = r = 1 23 ( Γ ( r 23 + 1 ) ) = ( 2 π ) 23 24 First\quad we\quad take\quad P=log\left( \Gamma \left( 1+x \right) \right) \\ Using\quad taylor\quad series\quad of\quad expansion,\\ P=-\gamma x+\sum _{ k=2 }^{ \infty }{ \left( \frac { \zeta \left( k \right) }{ k } .{ \left( -x \right) }^{ k } \right) } \\ where\quad \gamma \quad is\quad Euler-Mascheroni\quad constant\\ and\quad \zeta (k)=\sum _{ n=1 }^{ \infty }{ \frac { 1 }{ { n }^{ k } } } \\ Now\quad on\quad using\quad the\quad integral\quad forms\quad of\quad \gamma \quad and\quad \zeta (k),\\ we\quad get\\ P=\int _{ 0 }^{ \infty }{ \left( \frac { { e }^{ -\left( x \right) t }-\left( x \right) { e }^{ -t }-1+\left( x \right) }{ t\left( { e }^{ t }-1 \right) } \right) dt } \\ Now\quad on\quad substituting\quad x\quad =\quad \frac { r }{ 24 } -1,\quad we\quad get\\ P=\int _{ 0 }^{ \infty }{ \left( \frac { { e }^{ -\left( \frac { r-24 }{ 24 } \right) t }-\left( \frac { r-24 }{ 24 } \right) { e }^{ -t }-1+\left( \frac { r-24 }{ 24 } \right) }{ t\left( { e }^{ t }-1 \right) } \right) dt } \\ \therefore \quad \prod _{ r=1 }^{ 23 }{ \left( { e }^{ \left( \int _{ 0 }^{ \infty }{ \left( \frac { { e }^{ -\left( \frac { r-24 }{ 24 } \right) t }-\left( \frac { r-24 }{ 24 } \right) { e }^{ -t }-1+\left( \frac { r-24 }{ 24 } \right) }{ t\left( { e }^{ t }-1 \right) } \right) dt } \right) } \right) } =\prod _{ r=1 }^{ 23 }{ \left( { e }^{ \left( P \right) } \right) } \\ =\quad \prod _{ r=1 }^{ 23 }{ \left( { e }^{ \left( log\left( \Gamma \left( \frac { r }{ 24 } \right) \right) \right) } \right) } \\ =\prod _{ r=1 }^{ 23 }{ \left( \Gamma \left( \frac { r }{ 24 } \right) \right) } =\prod _{ r=1 }^{ 23 }{ \left( \Gamma \left( \frac { r }{ 23+1 } \right) \right) = } \sqrt { \frac { { \left( 2\pi \right) }^{ 23 } }{ 24 } }

The proof of the last step can be seen from here .

Thanks to Kartik, Ishan and Parth.

( Pukes )

you're awesome!!!!!!!

Pi Han Goh - 5 years, 9 months ago

Log in to reply

Thanks a lot. I'm still new into complicated calculus.

Aditya Kumar - 5 years, 9 months ago

Are you human or robot?????

Sai Akash - 5 years, 9 months ago

Log in to reply

Obviously a human :P. I'm new to high level calculus.

Aditya Kumar - 5 years, 9 months ago
Kartik Sharma
Oct 18, 2015

This is a great problem! I loved solving it.

So we have to decode this murder weapon -

0 e ( r 24 24 ) t ( r 24 24 ) e t 1 + ( r 24 24 ) t ( e t 1 ) d t \displaystyle \int_0^\infty \dfrac{e^{-\left(\frac{r-24}{24} \right)t} - \left(\frac{r-24}{24} \right)e^{-t} -1 + \left(\frac{r-24}{24} \right)}{t (e^t-1)} \, dt

Let's consider the following integral

I ( n ) = 0 e n t n e t 1 + n t ( e t 1 ) d t \displaystyle I(n) = \int_0^\infty \dfrac{e^{-nt} - n e^{-t} -1 + n}{t(e^t -1)} \ dt

I ( n ) = 0 t e n t e t + 1 t ( e t 1 ) d t \displaystyle I'(n) = \int_0^\infty \dfrac{-t e^{-nt} - e^{-t} +1}{t(e^t -1)} \ dt

I ( n ) = 0 ( e t t e n t e t 1 ) d t \displaystyle I'(n) = \int_0^\infty \left(\dfrac{e^{-t}}{t} - \dfrac{e^{-nt}}{e^t-1}\right)\ dt

I ( n ) = 0 ( e t t e ( n + 1 ) t 1 e t ) d t \displaystyle I'(n) = \int_0^\infty \left(\dfrac{e^{-t}}{t} - \dfrac{e^{-(n+1)t}}{1-e^{-t}}\right)\ dt

Now, this is probably Aditya Kumar 's favorite integral - he was really excited about it when he posted it. It simply evaluates to

I ( n ) = ψ ( n + 1 ) \displaystyle I'(n) = \psi(n+1) , the digamma function

0 n I ( n ) d n = 0 n ψ ( n + 1 ) d n \displaystyle \int_0^n {I'(n) \ dn} = \int_0^n {\psi(n+1) \ dn}

I ( n ) = ln ( Γ ( n + 1 ) ) \displaystyle I(n) = \ln(\Gamma(n+1))

and I ( r 24 24 ) = ln ( Γ ( r 24 24 + 1 ) ) \displaystyle I\left(\frac{r-24}{24}\right) = \ln\left(\Gamma\left(\frac{r-24}{24} + 1\right)\right)

= ln ( Γ ( r 24 ) ) \displaystyle = \ln\left(\Gamma\left(\frac{r}{24}\right)\right)

and

r = 1 23 Γ ( r 24 ) = ( 2 π ) 23 24 \displaystyle \prod_{r=1}^{23}{\Gamma\left(\frac{r}{24}\right)} = \boxed{\sqrt{\frac{{(2\pi)}^{23}}{24}}}

@Aditya Kumar Brilliant problem! And as far as I can guess, you must have made it from back, right?

I really am regretful that I didn't work on this problem a month before when I first saw it, I just didn't have the courage, lol.

Kartik Sharma - 5 years, 7 months ago

Log in to reply

Yes that's, true! Not exactly from back but from middle. I wanted to make a problem that came down to log(gamma(x)). But then I saw your note. So I brought it to that form. Ur solution is awesome!

Aditya Kumar - 5 years, 7 months ago

Log in to reply

Thanks! It is essentially the same as yours. I was really excited after solving it. Thanks again for the problem!

Kartik Sharma - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...