The magnitude of the complex number can be expressed as , where is an integer, and is a real number.
Submit your answer as .
Notations:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
(3+2i)!=(3+2i) (2+2i) (1+2i)*((2i)!)
||(3+2i)!||=||(3+2i)||×||(2+2i)||×||1+2i||×||(2i)!||,
||(3+2i)!||=√(520)*√(2π×cosech(2π))
||(3+2i)!||÷√(520)=√(2π×cosech(2π))
So A = 520, B = 2pi
Additional information Let Gamma function=G(x) And © denote complex conjugate
G(ni)×G(1-ni)=π÷sin(niπ)=π÷(i×sinh(nπ))
So ni×G(ni)×G(1-ni)=nπ×cosech(nπ)
G(1+ni)×G(1-ni)=(ni)!×(-ni)!=(ni)!×(ni)!©
=||(ni)!||^2=(nπ×cosech(nπ))
So ||(2i)!||=√(2π×cosech(2π))