Is it complicated or complex?

Calculus Level 4

E = n = 0 sin ( π n 2 + π 4 ) 2 n \mathscr{E} = \displaystyle \sum_{n=0}^{\infty} \dfrac{\sin \left( \dfrac{\pi n}{2} + \dfrac{\pi}{4}\right) }{2^n}

If E \mathscr{E} can be represented in the form a b c \dfrac{a \sqrt{b}}{c} , with a , c a, c coprime positive integers and b b square free, find a + b + c a + b + c .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jun 3, 2016

Call the expression O \mathscr O .

M E T H O D 1 \color{#0C6AC7}{\mathcal{METHOD~1}} The value of sin ( π n 2 + π 4 ) \small{\sin \left( \dfrac{\pi n}{2} + \dfrac{\pi}{4}\right) } for starting values of n n is 1 2 , 1 2 , 1 2 , 1 2 ; 1 2 , 1 2 , 1 2 , 1 2 ; \small{\dfrac1{\sqrt 2},\dfrac1{\sqrt 2},-\dfrac1{\sqrt 2},-\dfrac1{\sqrt 2}\color{#3D99F6}{;}\dfrac1{\sqrt 2},\dfrac1{\sqrt 2},-\dfrac1{\sqrt 2},-\dfrac1{\sqrt 2}\color{#3D99F6}{;}\cdots} .

We can form four infinite GP's by grouping 1 , 5 , 9 , 13 , 1,5,9,13,\cdots terms ; ; ;; 2 , 6 , 10 , 14 , 2,6,10,14,\cdots terms ; ; ;; 3 , 7 , 11 , 15 , 3,7,11,15,\cdots terms ; ; ;; 4 , 8 , 12 , 16 , 4,8,12,16,\cdots terms ; ; ;; as follows : :

O = 1 2 [ n = 0 1 1 6 n + n = 0 1 2 1 6 n n = 0 1 4 1 6 n n = 0 1 8 1 6 n ] \large \mathscr O=\small{\dfrac1{\sqrt 2}\left[\color{#D61F06}{\displaystyle\sum_{n=0}^{\infty}\dfrac1{16^n}}+\color{#D61F06}{\displaystyle\sum_{n=0}^{\infty}\dfrac1{\color{#333333}{2}\cdot16^n}}-\color{#D61F06}{\displaystyle\sum_{n=0}^{\infty}\dfrac1{ \color{#333333}{4}\cdot16^n}}-\color{#D61F06}{\displaystyle\sum_{n=0}^{\infty}\dfrac1{\color{#333333}{8} \cdot16^n}}\right] }

= 1 2 n = 0 1 1 6 n Infinite GP ( 1 + 1 2 1 4 1 8 ) \large =\dfrac1{\sqrt 2} \cdot \underbrace{\color{#D61F06}{\displaystyle\sum_{n=0}^{\infty}\dfrac1{16^n}}}_{\text{Infinite GP}}\left(1+\dfrac{1}2-\dfrac 14-\dfrac{1}8\right)

= 3 2 5 \large =\dfrac{3\sqrt 2}{5}

3 + 2 + 5 = 10 \Large 3+2+5=\boxed{\color{#0C6AC7}{10}}

M E T H O D 2 \color{#0C6AC7}{\mathcal{METHOD~2}}

Use sin x = e i x e i x 2 i \sin x =\dfrac{e^{ix}-e^{-ix}}{2i}

1 2 i ( n = 0 e i ( π n 2 + π 4 ) 2 n n = 0 e i ( π n 2 + π 4 ) 2 n ) \dfrac{1}{2i}\left(\displaystyle \sum_{n=0}^{\infty}\dfrac{e^{ i\left(\frac{\pi n}{2} +\frac{\pi}{4}\right)}}{2^n}-\displaystyle \sum_{n=0}^{\infty} \dfrac{ e^{-i\left( \frac{\pi n}{2} + \frac{\pi}{4}\right)}}{2^n}\right)

Your Method 2 looks like it's incomplete.

Method 1 is great! +1

Pi Han Goh - 5 years ago
Prakhar Bindal
Jun 6, 2016

Writing 5-6 terms you will get 2 infinite GP's

2^(-0.5) -2^(2.5) + 2^(4.5).............+ 2^(-1.5)-2^(3.5)..........

Applying formula of infinite Gp we get required result

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...