Is it convergent?

Level 2

L ( n ) = 1 n + 1 + 1 n + 2 + 1 n + 3 + . . . + 1 2 n L(n)=\dfrac{1}{n+1}+\dfrac{1}{n+2}+ \frac 1{n+3}+...+\dfrac{1}{2n}

For L ( n ) L(n) as defined above, find lim n L ( n ) \displaystyle \lim _{ n\rightarrow \infty }{ L(n) } . Give your answer to 3 decimal place.


The answer is 0.693.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 22, 2018

Relevant wiki: Riemann Sums

lim n L ( n ) = lim n 1 n + 1 + 1 n + 2 + 1 n + 3 + + 1 n + n = lim n k = 1 n 1 n + k = lim n 1 n k = 1 n 1 1 + k n Using Riemann sums: = 0 1 1 1 + x d x = ln ( 1 + x ) 0 1 = ln 2 0.693 lim n 1 n k = a b f ( k n ) = lim n a / n b / n f ( x ) d x \begin{aligned} \lim_{n \to \infty} L(n) & = \lim_{n \to \infty} \frac 1{n+1} + \frac 1{n+2} + \frac 1{n+3} + \cdots + \frac 1{n+n} \\ & = \lim_{n \to \infty} \sum_{k=1}^n \frac 1{n+k} = \lim_{n \to \infty} \frac 1n \sum_{k=1}^n \frac 1{1+\frac kn} & \small \color{#3D99F6} \text{Using Riemann sums: } \\ & = \int_0^1 \frac 1{1+x} dx = \ln (1+x) \bigg|_0^1 = \ln 2 \approx \boxed{0.693} & \small \color{#3D99F6} \lim_{n\to\infty} \frac 1n \sum_{k=a}^b f\left(\frac kn\right) = \lim_{n \to \infty} \int_{a/n}^{b/n} f(x)\ dx \end{aligned}

Here is another way of doing it.

1 n + 1 + 1 n + 2 + . . . + 1 2 n = 1 + 1 2 + 1 3 + . . . + 1 2 n ( 1 + 1 2 + . . . + 1 n ) \displaystyle \dfrac{1}{n+1}+\dfrac{1}{n+2}+...+\dfrac{1}{2n}=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2n}-\left ( 1+\dfrac{1}{2}+...+\dfrac{1}{n} \right )

Now, the second term(the one in parentheses) can be re-written as

2 2 + 2 4 + . . . + 2 2 n \displaystyle \dfrac{2}{2}+\dfrac{2}{4}+...+\dfrac{2}{2n}

So, the whole sum becomes

1 1 2 + 1 3 1 4 + . . . + 1 2 n 1 1 2 n \displaystyle 1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n}

And clearly, the limit is ln 2 0.693 \displaystyle \ln{2} \approx 0.693 as can be shown using series for ln ( 1 + x ) \displaystyle \ln(1+x) with x < 1 \displaystyle |x|<1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...