Is it difficult?

Algebra Level 3

x 3 + ( x + 1 ) 3 + ( x + 2 ) 3 = ( x + 3 ) 3 \large{x^3+(x+1)^3+(x+2)^3=(x+3)^3}

For what real value of x x is the above equation true?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jan 8, 2016

Rearranging terms, we get: x 3 + ( x + 1 ) 3 = ( x + 3 ) 3 ( x + 2 ) 3 x^3+(x+1)^3=(x+3)^3-(x+2)^3 ( 2 x + 1 ) ( x 2 + x + 1 ) = ( 3 x 2 + 15 x + 19 ) \Rightarrow (2x+1)(x^2+x+1)=(3x^2+15x+19) x 3 6 x 9 = 0 \Rightarrow x^3-6x-9=0 ( x 3 ) ( x 2 + 3 x + 3 ) = 0 \Rightarrow (x-3)(x^2+3x+3)=0 Hence only real x= 3 \text{ Hence only real x=}\color{magenta}{3}

Amed Lolo
Jan 14, 2016

put y=x+3,substitute in expression (x+3-3)^3+(x+3-2)^3+(x+3-1)^3=x^3 ,so. ,,,,,(y-3)^3+(y-2)^3+(y-1)^3=y^3 .by solving expression result 2y^3-9y^2+21y-18=0.(y^2-3y+3)(y-6)=0,,y=6 or y=3+or-√9-4×3(not applicable ),y=6,,,,,X=6-3=3####

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...