Is it dissolvable! sorry divisible -part 2!

The integers a , b a,b are selected from 5 n 5n consecutive integers: 1 , 2 , 3 , 4 , , 5 n 1 , 5 n {1,2,3,4, \ldots, 5n-1,5n} . Find the sum of the digits of number of unordered ways can these integers be selected , such that a 2 b 2 a^2-b^2 is divisible by 5 when n = 100 n=100 .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Gautam Sharma
Feb 23, 2015

Every whole number can be expressed in the form of 5 λ + i , i 0 , 1 , 2 , 3 , 4. 5\lambda+i,i\in0,1,2,3,4.

( a 2 b 2 ) = ( a + b ) ( a b ) (a^2-b^2)=(a+b)(a-b)

CASE 1

( a + b ) is divisible by 5 when (a,b) of the form (a+b)\text{is divisible by 5 when (a,b) of the form } ( 5 λ 1 , 5 λ 2 ) ( 5 λ 1 + 2 , 5 λ 2 + 3 ) , (5\lambda_1,5\lambda_2)(5\lambda_1+2,5\lambda_2+3), ( 5 λ 1 + 1 , 5 λ 2 + 4 ) (5\lambda_1+1,5\lambda_2+4)

CASE 2

( a b ) is divisible by 5 when (a,b) of the form (a-b)\text{is divisible by 5 when (a,b) of the form } ( 5 λ 1 + i , 5 λ 2 + i ) , i 0 , 1 , 2 , 3 , 4 , 5 (5\lambda_1+i,5\lambda_2+i),i\in0,1,2,3,4,5 5 n C 2 ( C A S E 2 ) + ( n C 1 ) ( n C 1 ) ( C A S E 1 ) 5 ^nC_2 (CASE 2)+(^nC_1)(^nC_1)(CASE 1) I have excluded the case for ( 5 λ 1 , 5 λ 2 ) (5\lambda_1,5\lambda_2) in CASE 1 because it have been included in CASE 2.

5 n C 2 + ( n C 1 ) ( n C 1 ) 5 ^nC_2+(^nC_1)(^nC_1) put n=100 and we get 44750

4 + 4 + 5 + 7 + 0 = 20 4+4+5+7+0=20

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...